Asian
Physics
Olympiad
E1. Static response of a magnetically active fluid
Adelaide 2019 Marking scheme. Version 1.5a

Question part	Total marks	Partial marks	Explanation for partial marks and special cases
A. 1	0.8	$\begin{array}{r} \hline 0.1 \\ 0.5 \\ (0.2) \\ 0.2 \end{array}$	Diagram of a useful setup Full marks for z within range $(0.070 \pm 0.003) \mathrm{m}$ For z within range $(0.07 \pm 0.01) \mathrm{m}$ Uncertainty estimate (reasonable, <= 35%); if 2 mm 0.1
A. 2	0.8	$\begin{array}{r} 0.3 \\ (-0.1) \\ \\ (-0.1) \\ \\ 0.3 \\ 0.2 \end{array}$	Correct formula $\Delta \rho g=3 \chi B_{r}^{2} a^{4} l^{2} /\left(8 \mu_{0} z^{7}\right)$ If measured a or I incorrectly instead of using given value (if good measurement of a or I, give full points) If $\Delta \rho$ out by ~ 10 but dimensionally correct No marks if dimensionally incorrect (eg. no g) Value of $\Delta \rho=4.1 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ (e.c.f. full marks for wrong z in A. 1 - see figure) Uncertainty estimate ($1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$)
B. 1	0.6	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.2 \\ & 0.1 \end{aligned}$	Value for $z_{\text {crit }}=41 \pm 1 \mathrm{~mm}$ (or $22 \pm 1 \mathrm{~mm}$ full points using small magnet) Uncertainty for $z_{\text {crit }}$ at most 2 mm Value for $\lambda=10 \pm 1 \mathrm{~mm}$ Uncertainty for λ at most 2 mm
B. 2	0.6	$\begin{aligned} & 0.3 \\ & 0.2 \\ & 0.1 \end{aligned}$	Value for $\sigma=1.0 \cdot 10^{-4} \mathrm{~N} \cdot \mathrm{~m}^{-1}$, correct with an order of magnitude (e.c.f. -0.1 for wrong Δ) Uncertainty estimate $\frac{\Delta \sigma}{\sigma}=\frac{7 \Delta z}{z}+\frac{2 \Delta \lambda}{\lambda}$ Relative uncertainty less than 70\%
C. 1	0.6	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.1 \\ & 0.1 \end{aligned}$	Diagram of a useful setup - needs to show clearly the measured quantity and the setup Measurements (at least 3) and calculations (0.1 for 1 measurement giving good value of for Δz) Value for $\Delta z=0.80 \pm 0.02 \mathrm{~mm}$ Uncertainty estimate <3\%
C. 2	3.5	1.0 0.5 0.3 0.7 0.5 0.5	Raw measurements for \# of turns and M (1.0 for $18+$ data points, 0.2 per 4 data points if <18, no points for changing l) Correct conversion to R Graph shows both regions Graph has $18+$ correct data points (or if not $18+, 0.2$ per 6 data points, plotted correctly) Good fit to correct region Answer n with range $6--7$ with uncertainty
D. 1	0.5	0.5	Value for $\sigma=1.1 \cdot 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}$ - Full mark if within $30 \%, 0.2$ - within 50%, else -0
D. 2	1.0	$\begin{array}{r} \hline 0.9 \\ (0.6) \\ (0.4) \\ \\ 0.1 \end{array}$	$\begin{aligned} & 5+\text { up, } 6+\text { down } \\ & 5+\text { up, } 5+\text { down } \\ & 4+\text { up, } 4+\text { down } \end{aligned}$ No points if only in one direction Reasonable uncertainty estimate
D. 3	1.0	$\begin{array}{r} 0.3 \\ (-0.1) \\ (-0.1) \end{array}$	Correctly plotted graph No error bars if uncertainty in D2 large enough to plot Only one direction

		0.2	One smooth curve fitting points
		0.2	Second smooth curve fitting points
		0.3	Clear hysteresis shown: at least 1.5 mm separation in z (0.1 if separated by less, 0
if lines cross)			
D.4	0.6	0.2	Correct graph for surface energy
		0.2	Correct graph for magnetic energy
		0.2	Correct step behavior for both graphs

