
Theory Q1-1
English (Official)

RF reflectometry for spin readout for silicon quantum com-
puting

Introduction
Developing the idea of quantum computing into a practical technology is one of the largest outstanding
challenges in science and technology. A promising path is to manipulate individual electrons in silicon
transistors by time-dependent electromagnetic fields.

In this question, we investigate the use of radio frequency (RF) reflectometry and single-electron transis-
tors to read out the state of quantum bits in silicon-based quantum computer prototypes.

Part A and Part B discuss radio wave transmission through cables and transmission lines, part C is de-
voted to conditions for wave reflection, part D introduces the single-electron transistor, and parts E and
F introduce and ask you to optimise the method of reflectometry.

Part A: Lumped element model of a co-axial transmission line (2.0 points)
When modelling DC or low frequency signals, one often assumes that a voltage pulse travels instanta-
neously throughout the circuit. This assumption is valid when the wavelength of such signals is much
longer than the size of the circuit, however when working with radio frequency signals, the dynamics
are more complex, and we need to account for the intrinsic capacitance and inductance of our cables
in our model. We model a co-axial transmission line which acts as a waveguide as described below, ig-
noring the small resistance of the copper and the small conductance through the dielectric. Throughout
the problem, we consider the large-wavelength limit of electromagnetic waves in the co-axial cable such
that electric and magnetic fields are perpendicular to the axis of the cable everywhere (the so-called
transverse electromagnetic mode).

Diagramof a coaxial cable showingC - the centre core, I - the dielectric insulator, S - themetallic
shield and J - the plastic jacket.

Consider a co-axial cable consisting of a copper inner core of negligible resistance, negligible magnetic
permeability and radius 𝑎, covered by an outer co-axial copper shield with inner radius 𝑏. A dielectric
of dimensionless relative permittivity 𝜀r and dimensionless relative permeability 𝜇r separates the layers.
When electromagnetic signals propagate through the co-axial cable, they are confinedbetween the inner
core and outer shielding.

A.1 At what speed do electromagnetic waves propagate in the co-axial cable? 0.2pt

A.2 If there is a charge Δ𝑞 on a length Δ𝑥 of the inner core of the co-axial cable,
and the outer shield is grounded, find the electric field in the region between
the inner core and the shield.

0.2pt
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A.3 Find the capacitance per unit length, 𝐶𝑥, of the co-axial cable. You may wish to
consider a length Δ𝑥 of the cable.

0.3pt

A.4 Find the inductance per unit length, 𝐿𝑥, of the cable. 0.3pt

A lumped element model of the cable is constructed by considering the inductance and capacitance of
short sections of the cable. The inductance is assumed to be a property of the inner core, and the capac-
itance links the core with the shielding. A diagram of the lumped element model is shown below.

Circuit diagram of lumped element model of coaxial cable.

A.5 i. Show that the impedance𝑍0 of a semi-infinite length of cable is𝑍0 = √𝐿𝑥/𝐶𝑥.
ii. Find 𝑏/𝑎 if the cable has impedance 𝑍0 = 50 Ω and is made using a dielectric
material with 𝜀r = 4.0 and 𝜇r = 1.0.

1.0pt

Part B: Hypothetical transmission line with return along a grounded plane (1.0 points)
An alternative hypothetical transmission line is shown in the diagram below. The input signal is sent
through a very thin conductor of radius 𝑎, which is a distance 𝑑 ≫ 𝑎 from a highly conductive grounded
plane. Thematerial surrounding the conductor has dimensionless relative permittivity 𝜀r and dimension-
less relative permeability 𝜇r. The return current flows along the grounded plane.

Diagramof a hypothetical transmission line showing C - the conductor of radius 𝑎, at a distance
𝑑 ≫ 𝑎 from P - the grounded conducting plane. The conductor is embedded in a material with
dimensionless relative permeability 𝜀r and dimensionless relative permittivity 𝜇r.

B.1 Find an expression for the characteristic impedance of this hypothetical trans-
mission line.

1.0pt

Part C: Basics of RF reflectometry (1.2 points)
An electromagnetic wave can propagate in a transmission line in two opposite directions. For each di-
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rection of propagation, the characteristic impedance 𝑍0can be used to relate the voltage 𝑉0 and current
𝐼0amplitudes as in the Ohm's law, 𝑍0 = 𝑉0/𝐼0.

Consider an interface between two transmission lines, with characteristic impedances 𝑍0 and 𝑍1. A
schematic diagram of the circuit is shown below.

Z0 Z1

Circuit diagram of a transmission line of impedance 𝑍0 connected to a transmission line of
impedance 𝑍1. The physical size of the interface is much smaller than the wavelength.

When a signal 𝑉i sent into the transmission line with impedance 𝑍0reaches the interface it is partially
transmitted into the second transmission line, resulting in a signal 𝑉t in that line which propagates for-
ward. Some of the signal may also be reflected, resulting in a backward propagating signal in the initial
transmission line 𝑉r.

C.1 Find the reflectance of the interface Γ = 𝑉r/𝑉i. 1.0pt

C.2 State the condition(s) for the signal 𝑉i to have gained a 𝜋 phase change on re-
flection.

0.2pt

Part D: The single electron transistor (3.3 points)
A single electron transistor (SET) consists of a quantum dot, which is a small isolated conductor where
electrons can be localised, and of several electrodes in its vicinity. The gate electrode couples capacita-
tively to the quantum dot, while the two other electrodes --- the source and the drain --- are connected
via tunnel junctions, through which electrons can tunnel due to quantummechanics. A simplified circuit
diagram for an SET is shown in the figure.

Circuit diagram representation of an SET. QD is the quantum dot, S is the source, D is the drain
and G is the gate.
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The capacitance of the gate is 𝐶𝑔 and the capacitance of the tunnel junctions is 𝐶𝑡 ≪ 𝐶𝑔. Consider 𝐶𝑔 to
be the total capacitance of the quantum dot. In this part of the problem, the source and the drain are
held at zero potential, and the voltage on the gate electrode is fixed at 𝑉𝑔.

D.1 Consider a state of the SET in which the quantum dot contains 𝑛 electrons.
i. Find the electrical potential 𝜑𝑛 on the QD.
ii. Find the amount of energy Δ𝐸𝑛 that is necessary to bring an additional elec-
tron from the source or the drain onto the QD.
 

1.5pt

If Δ𝐸𝑛 < 0 then electrons will spontaneously tunnel into the quantum dot until such a number 𝒩 > 𝑛 is
reached that Δ𝐸𝒩 ≥ 0. The equilibrium number of electrons 𝒩 and the corresponding addition energy
Δ𝐸𝒩 can be controlled by choosing the appropriate voltage 𝑉𝑔.

D.2 Find an expression for the maximal possible value 𝐸𝑐 = maxΔ𝐸𝒩(𝑉𝑔) of the
equilibrium addition energy that can be achieved by tuning the gate voltage of
the SET.

0.5pt

If Δ𝐸𝒩 = 0 then tunnelling of electrons does not require extra energy and SET is in a highly conductive
ON state. If Δ𝐸𝒩 > 0, then the conductance of the SET is reduced (high-resistance OFF).

For the number of electrons on the quantum dot to remain well-defined, certain conditions need to be
satisfied. Firstly, if electrons in the source or drain have thermal energies sufficient to move sponta-
neously onto the quantum dot, the contrast between the ON and OFF states will disappear.

D.3 Find a condition on the temperature of the electrons so that electrons cannot
move onto the quantum dot by thermal excitation.

0.5pt

Secondly, tunnelling of electrons onto or off the dot limits the lifetime of their energy states. This tun-
nelling can be modelled using an effective resistance of the tunnel junction with the characteristic tun-
nelling time equal to the characteristic time for charging or discharging the quantum dot through the
junction.

D.4 i. Estimate the tunnelling time for a quantum dot in terms of capacitance 𝐶𝑡
and effective resistance 𝑅𝑡 of the tunnel junction.
ii. Find a condition on the effective resistance 𝑅𝑡 so that the electrons in the
quantum dot retain sufficiently well-defined energy for the ON and OFF states
to remain distinct.

0.8pt

Part E: RF reflectometry to read out SET state (1.0 points)
The state of the SET is sensitive to electrical potentials created by nearby elements of the quantum circuit
(such as quantum bits), and distinguishing between ON and OFF states provides a way to read out the in-
formation produced by the quantum computer. The SET in the ON state can bemodelled by a resistance
𝑅ON = 100 kΩ while in the OFF state we can assume the SET to be a complete insulator (neglecting any
capacitative connection between the source and the drain via the SET). While it is possible to determine
the state of the SET by measuring the response to an input signal through the source, it is faster to do so
using RF reflectometry to measure both the amplitude and phase of the reflected signal, i.e. determined
the reflectance Γ.
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The change in reflectance due to switching of an SET between ON and OFF states is

ΔΓ = |ΓON − ΓOFF| , (1)

where ΓON and ΓOFF are the reflectances in two different states.

Z0

ZSET

Circuit diagram of transmission cable of impedance 𝑍0 connected to an SET.

E.1 Find the change in reflectanceΔΓ between the conductive and insulating states
for a typical SET connected to a co-axial cable with impedance of 50 Ω.

0.2pt

In order to increase the change in reflectance, andhence the sensitivity of the RF reflectometry, the circuit
is modified by inclusion of an inductor. The intrinsic capacitance due to the device geometry 𝐶0 ≈ 0.4 pF
is also taken into account. The RF reflectometry is conducted using a signal of angular frequency 𝜔rf.

Z0 L0

C0
ZSET

Modified SET circuit.

E.2 Estimate the value of the inductance 𝐿0 that can result in the change in re-
flection on the order of one. Calculate your estimate for 𝐿0 numerically for
𝜔rf/(2𝜋) = 100 MHz and compute the corresponding ΔΓ.

0.8pt

Part F: Charge sensing with a single lead quantum dot (1.5 points)
For a scalable quantum computing architecture, the number of wires reaching each individual quantum
bit need to be minimized. A promising alternative to an SET for charge sensing in silicon quantum com-
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puting is a Single Lead Quantum Dot (SLQD). In many ways it is similar to an SET, but does not have the
source and drain leads. The gate is the only electrode, through which the electron energy states of the
quantum dot are controlled and also through which RF reflectometry is conducted.

Like an SET, a SLQD has an OFF in which the SLQD behaves as a total insulator. In contrast to an SET,
the ON state of the SLQD is capacitive, with capacitance 𝐶q. In order to maximize the difference in re-
flectance ΔΓ of the SLQD, the following circuit is constructed. The parasitic capacitance 𝐶0 ≈ 0.4 pF is
fixed by circuit geometry, but the value of 𝐿0 and the operating frequency can be changed to optimize
the performance. The characteristic impedance of the transmission line is 𝑍0 = 50Ω.

Z0

L0 C0
ZSLQD

Circuit diagram of the SLQD readout circuit connected to the transmission line.

F.1 Suggest 𝜔rf and 𝑍C = √𝐿0/𝐶0 that allow ΔΓ ∼ 1 for given 𝐶0 and 𝐶𝑞. 1.0pt

Optimal values of 𝐿0 are relatively large and not always technically feasible. Hence, other types of circuit
elements may be needed to improve sensitivity of the reflectometry readout circuit.

F.2 Assume that 𝐿0 (and hence 𝑍𝐶) is fixed. Draw a circuit diagram showing where
to place an additional element in the SLQD readout circuit and specify the pa-
rameter(s) of this element such that ΔΓ ∼ 1 can still be achieved without requir-
ing a large inductance.

0.5pt
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A. LUMPED ELEMENT MODEL OF A CO-AXIAL TRANSMISSION LINE

A.1 The speed of wave propagation in free space (c0 = 299 792 458m/s) is c0 = 1/
√
ε0 µ0. The speed in the dielectric

& diamagnetic medium is

v =
c0√
εr µr

(A.1)

A.2 Gauss law for the flux through a cylindrical surface with radius r co-axial with the the core, a < r < b:

∆x 2πr E(r) =
∆q

εrε0
⇒ E(r) =

∆q

∆x

1

2πεrε0r
(A.2)

A.3 The capacitance

Cx ∆x =
∆q

φ
(A.3)

where the potential φ of the core with respect to the shield is

0− φ = −
∫ b

a

E(r) dr ⇒ φ =
∆q

∆x

1

2πεrε0
ln

b

a
(A.4)

Cx =
2πεrε0

ln b
a

(A.5)

A.4 The magnetic flux through a rectangular contour paralel to the axis equal inductance times the current:

∆x

∫ b

a

B(r) dr = Lx ∆x I (A.6)

Biot-Savart law B(r) = µrµ0

2π
I
r gives

Lx =
µrµ0

2π
ln

b

a
(A.7)

A.5 i. Adding δx length of the cable should not change its impedance. Hence the impedance Z of the following
circuit must be equal to Z0:

1

Z
=

1

Z0 + jωδL
+

1
1

jωδC

=
1

Z0
(A.8)

Z2
0 + j ω δLZ0 − δL/δC = 0 (A.9)

(here engineering notation for j2 = −1 is used.) δL/δC = Lx/Cx and δL → 0 for δx → 0, hence

Z0 =
√
Lx/Cx (A.10)

ii.

Z0 =
√
Lx/Cx =

ln(b/a)

2π

√
µrµ0

εrε0
= ln(b/a)

√
µr

εr
× 59.96Ω (A.11)

For Z0 = 50Ω, εr = 4.0 and µr = 1.0 this gives b = 5.30 a .



2

B. HYPOTHETICAL TRANSMISSION LINE WITH RETURN ALONG A GROUNDED PLANE

B.1 The high-conductance ground plate can be replaced by an image of the wire with opposite direction of the
current at distance 2d from the real wire. The magnetic fields from the real and the imaginary wires add up
and need to be integrated to get the magnetic flux between the wire and the plate:

Lx ∆x I =
µµ0

2π
I

∫ d

a

(
1

r
+

1

2d− r

)
dr∆x (B.1)

Lx =
µµ0

2π
ln

(
2d

a
− 1

)
≈ µµ0

2π
ln

2d

a
(B.2)

The potential difference between the wire and the plate can be obtained similarly by integrating the combined
field for the wire and its image:

φ =
∆q

∆x

1

2πεrε0

∫ d

a

(
1

r
+

1

2d− r

)
dr =

∆q

∆x

ln(2d/a)

2πεrε0
(B.3)

Cx =
∆q

∆x

1

φ
≈ 2πεrε0

ln(2d/a)
(B.4)

Hence the characterstic impedance Z0 =
√
Lx/Cx of the wire-plate system is

Z0 =
ln(2d/a)

2π

√
µrµ0

εrε0
(B.5)

C. BASICS OF RF REFLECTOMETRY

C.1 At the interface, values of the voltage on both transmission lines have to coincide:

Vi + Vr = Vt (C.1)

The current has to be conserved at the interface, however, the incident and the reflected waves carry the current
in opposite directions:

Vi

Z0
− Vr

Z0
=

Vt

Z1
(C.2)

It is clear from the equation above that Vt ̸= 0 if Z0 ̸= Z1 – impedance mismatch has to cause reflection. Solving
the voltage and the current equations for Γ = Vr/Vi gives

Γ =
Z1 − Z0

Z1 + Z0
(C.3)

C.2 A π-shift implies opposite signs of Vi and Vr and hence requires Γ < 0. This implies Z1 < Z0 .

D. THE SINGLE ELECTRON TRANSISTOR

D.1 i. Since any capacitance beyond Cg is neglected in our model, the quantum dot can be thought as a capacitor
plate with the gate being the other plate of the same capacitor with capacitance Cg. The fixed number n of
electrons trapped on the quantum dot sets a fixed-charge (q = −ne) boundary condition for the capacitor
Cg on the QD, while the gate side is kept at a constant potential Vg. (We denote the elementary charge
by e > 0). The implies that an excess charge of opposite sign, −q = ne will accumulate on the gate, to
keep electric field confined between the QD and the gate. The potential jump across the capacitor from
the gate to the QD will be equal to the capacitor q/Cg = −ne/Cg. Hence the potential on the QD is

φn = Vg +
−ne

Cg
(D.1)
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ii. Bringing an infinitesimal charge δq from potential 0 to potential φ(q) requires energy δE = φ(q)δq, and
the dependence of potential φ(q) on the accumulated charge q is linear. For the single-electron transfer,
the additional charge of the electron, −e, changes the potential from φn to φn+1 = φn − e/Cg. Hence the
work necessary to accumulate an extra e on the QD is the integral of δE

∆En = −e
φn + φn+1

2
(D.2)

∆En =
e2

Cg

(
n+

1

2

)
− eVg (D.3)

Alternatively, ∆En can be obtained from energy conservation, by computing the change of the energy of
the capacitor the dork the work done against the electromotive force of the battery (=−“work done by the
battery’) for a charge +e to be brought from the ground potential via the battery to the gate-side plate of
the capacitor:

∆En =
e2(n+ 1)2

2Cg
− e2n2

2Cg
− eVg (D.4)

Note that without Ct ≪ Cg approximation, the answer is ∆En = e2

Cg+2Ct

(
n+ 1

2

)
− eVgCg/(2Ct + Cg)

(not required to receive full marks).

D.2 N is a minimal integer n for which ∆En ≥ 0. Consider the marginal case of ∆EN = 0 which is achieved at
some Vg = V0,

∆EN (V0) = 0 =
e2

Cg

(
N +

1

2

)
− eV0 (D.5)

If Vg would go slightly larger than V0, then ∆En would go negative and then minimal n that makes a positive
∆En would jump from N to N + 1. Hence Ec = ∆EN+1(V0). This gives

∆EN+1(V0) = Ec =
e2

Cg

(
N + 1 +

1

2

)
− eV0 =

e2

Cg
(D.6)

D.3 In a metal, only electrons in an energy range ± ≈ kBT around the Fermi level take part in the thermal motion.
(Here kB is the Boltzmann constant.) Typical energy of these electrons is kBT per particle and it may not

exceed characteristic single-electron addition energy Ec, kBT < Ec .

D.4 i. τ = Rt Ct

ii. Quantum uncertainty of energy (life-time broadening) h/τ must be less than the energy difference between
the states with n and n+ 1 electrons,

h/τ < Ec ⇒
h

RtCt
<

e2

Cg
(D.7)

Rt >
h

e2
Cg

Ct
>

h

e2
(D.8)

E. RF REFLECTOMETRY TO READ OUT SET STATE

E.1

Γ =
ZSET − Z0

ZSET + Z0
(E.1)

ΓON =
105 − 50

105 + 50
≈ 1− 2

50

105
(E.2)

ΓOFF = lim
Z1→∞

Z1 − Z0

Z1 + Z0
= 1 (E.3)

∆Γ = |ΓON − ΓOFF| ≈ 1.0 · 10−3 (E.4)
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E.2 Large change in reflectance requires the impedance Z1 of the circuit to switch between Z1 < Z0 to Z1 > Z0 as
the SET between ON (ZSET = 100kΩ) and OFF (ZSET = ∞).

In the OFF state of the SET, the circuit is an disspationless LC contour with resonance frequency ω0 = 1/
√
L0C0

and its impedance is 0. If we choose

L0 =
1

ω2
rfC0

(E.5)

then the imedance of the ω0 = ωrf.

Since Ztot (the total impedance of the circuit) in the OFF state of the SET equals to 0, the reflectance i
ΓOFF = −1. As we switch to the ON state with ZSET = RSET = 105Ω, the change in reflectance will be large if
|Ztot| in this ON state is on the order of Z0 or larger, which is indeed the case.

For the ON state and ω0 = ωrf

Ztot =

(
1
1

j ω C0

+
1

RSET

)−1

+ j ωL0 =
RSET

1 + j ωC0 RSET
+ j ω L0 =

RSET + j
√

L0/C0

1 +R2
SETC0/L0

(E.6)

For C0 = 0.4 · 10−12 F, Z0 = 50Ω and ωrf = 2π · 108 Hz, we have L0 = 6.33µH , Ztot = (158 + 6.3 j)Ω,

ΓON = 0.5198 + 0.0145 j, and ∆Γ = 1.52 .

F. CHARGE SENSING WITH A SINGLE LEAD QUANTUM DOT

F.1 The SLQD readout circuit contains only reactive elements, so |Γ| = 1 will always be one. The OFF state of the
SLQD corresponds to an inductor L0 and a capacitor C0 connected in parallel. We again choose

ωrf = 1/
√

L0C0 (F.1)

so that Ztot is the OFF state is infinite and ΓOFF = 1.

The ON state corresponds to ZSET = −j 1
ωrfCq

and Ztot at ωrf = ω0 is just the impedance of the SLQD

Ztot =
1

(jωrfL0)−1 + jωrf(C0 + Cq)
= −j

1

ω0Cq
= −j

C0

Cq
ZC (F.2)

For the complex phase of ΓON = (Ztot−Z0)/(Ztot+Z0) to be significantly different from zero, we need |Ztot| ∼ Z0

since Ztot is purely imaginary. Hence

ZC ∼ Cq

C0
Z0 (F.3)

F.2 If L0 is fixed, we can still operate the circuit at the frequency

ωrf = 1/
√

L0C0 (F.4)

that gives ΓOFF = 1. However, we need to deduce a way to increase |Ztot| even if ZC ≪ CqZ0/C0 is not
sufficient. One of the ways to do that is to add an additional capacitance Cm is series with rest of the circuit.

This will give (at ωrf = ω0)

Ztot = −j

(
C0

Cq
ZC +

1

ω0Cm

)
= −jω−1

0

(
C−1

q + C−1
m

)
(F.5)

We can satisfy the condition |Ztot| = Z0 (and hence ΓON = j and ∆Γ =
√
2 ∼ 1) with

Cm =
Cq

Z0Cqωrf − 1
=

Cq

√
L0C0

Z0Cq −
√
L0C0

(F.6)

Cm =
CqZC

Z0Cq/C0 − ZC

ZC≪Z0Cq/C0

≈ 1

Z0 ωrf
(F.7)
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X-ray jets from active galactic nuclei

Introduction
Active galactic nuclei (AGN) are supermassive black holes which form the centres of galaxies, and emit
large amounts of energy in radiation and particle flows. One feature of many AGN are jetted outflows,
which can be observed through radio emission, and sometimes also in other parts of the electromagnetic
spectrum, including x-rays. These jets are large flows of plasma at relativistic speeds, over lengths of
order 1020 m, which is tens of thousands of light years. The x-ray emission from jets is usually dominated
by synchrotron emission from relativistic electrons gyrating in the magnetic field of the jet.

Figure 1: X-ray image of the jet from the Centaurus A AGN. Darker regions represent regions
of higher intensity x-rays. Brighter regions within the fainter jet are called knots. (Snios et al.,
2019)

Part A: 1D fluid model of a jet
A simple model of the flow of jets assumes that the flow is steady and directed radially away from the
central AGN, so approximately one dimensional, and that the plasma in the jet is in pressure equilibrium
with its surroundings. There is assumed to be a constant rate per volume of mass injected into the jet
from stars which lose their outer layers as they move through their life cycle.

The jet is described in terms of the coordinate representing distance from the AGN, 𝑠, and the opening
radius 𝑟 of the conical jet. These distances are measured in parsecs, where 1 pc = 3.086 × 1016 m. The
speed of the jet flow is assumed to be directed radially away from the central AGN, and be a function
of 𝑠 only. The plasma in the jet is comprised of electrons, protons, and some heavier ionised nuclei.
The average energy carried by each particle in the jet, in the reference frame of the bulk flow of the jet
(which we will call the jet frame), is 𝜖av = 𝜇pp𝑐2 + ℎ, where the term ℎ includes all thermal kinetic energy
and potential energies in terms of the pressure 𝑃 and 𝑛 is the number density of the plasma.

As the stars, which the jet flowspast,move through their life cycles they can lose part of their atmosphere.
This results in a uniform rate of injection of mass per unit volume 𝛼 into the jet, and the injected particles
are assumed to be at rest relative to the AGN.

This model can be applied to the Centaurus A jet. Centaurus A is one of the nearest AGN, so it is possible
to observe its jet at relatively high spatial resolution. The total power carried by the jet is estimated to
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be 𝑃j = 1 × 1036 J.s−1. See below for a diagram of a simple geometrical description of the Centaurus
A jet, including measurements of some jet parameters. 𝑠1 is the coordinate of the start of the jet, and
𝑠2 the coordinate of the end of the jet. In Centuarus A the average mass per particle is 𝜇pp = 0.59𝑚p
and ℎ = 13

4 𝑃/𝑛 .The pressure in the plasma surrounding the jet is 𝑃(𝑠) = 5.7 × 10−12 ( 𝑠𝑠0 )−1.5 Pa, where
𝑠0 = 1 kpc.

Figure 2: The Centaurus A jet, showing the geometry compared to the active galactic nucleus
(AGN).

The jet is described by the following parameters, all of which depend on the distance 𝑠 from the AGN:

• the opening radius of the jet 𝑟(𝑠) in the AGN frame

• the cross sectional area of the jet 𝐴(𝑠) in the AGN frame

• the speed of the jet 𝑣(𝑠) in the AGN frame

• the lorentz gamma factor of the jet 𝛾(𝑠) in the AGN frame

• the number density 𝑛(𝑠) in the frame of the jet

Any of these parameters can be used in your answers to A1-4.

A.1 Find the number density of particles, 𝑛′(𝑠), in the frame of the AGN, in terms of
the proper number density, 𝑛(𝑠) and other jet parameters. The proper number
density is the number density in the frame which is locally co-moving with the
jet plasma outflow, which we will call the jet frame.

0.3pt

A.2 Find the flux of particles, 𝐹𝑝(𝑠), across a cross section of the jet with area 𝐴, at
a distance 𝑠 from the AGN.

0.2pt

A.3 Write a continuity relationship between the particle flux into the jet and out of
the jet in terms of the jet parameters at 𝑠1and 𝑠2, and 𝑉 , the total volume of the
Centaurus A jet and other required parameters.

0.5pt
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A.4 Write a relationship between the energy flux into the jet, and the energy flux out
of the jet in terms of the jet speeds, cross sectional areas and proper number
densities at 𝑠1and 𝑠2, the volume, 𝑉 , of the jet and any other required parame-
ters of the Centaurus A jet.

0.6pt

The power carried by a jet is defined to be the sum of the total bulk kinetic energy flux and the total
thermal energy flux, so

𝑃j(𝑠) = 𝐹E(𝑠) − 𝑀̇𝑐2 (1)

where 𝐹E(𝑠) is the flux of energy through the cross section of the jet at 𝑠, and 𝑀̇ is the mass flux through
the jet cross section at the same distance 𝑠 from the AGN.

A.5 Using your answers to previous parts find 𝑑𝑃j
𝑑𝑠 . 0.6pt

A.6 Find numerical values for themass fluxes 𝑀̇1, into the Centaurus A jet at 𝑠1, and
also 𝑀̇2, out of the Centaurus A jet at 𝑠2,

0.4pt

A.7 Find an expression for the total momentum flux, Π, into the Centaurus A jet.
Also numerically evaluate this expression.

0.5pt

A.8 Find a numerical value for the total force due to external pressure, 𝐹Pr, on the
Centaurus A jet.

0.5pt

A.9 Write the expected relationship between Π and 𝐹Pr. Also, calculate the percent-
age difference between the model value of Π , which you found in A7, and the
expected value.

0.2pt

Part B: Gas of ultra relativistic electrons
Consider a gas of ultra relativistic electrons (𝛾 ≫ 1), with an isotropic distribution of velocities (does not
depend on direction). The proper number density of particles with energies between 𝜖 and 𝜖+𝑑𝜖 is given
by 𝑓(𝜖)𝑑𝜖, where 𝜖 is the energy per particle. Consider also a wall of area Δ𝐴, which is in contact with the
gas.

B.1 Write an integral expression for the total energy per volume of the electron gas. 0.2pt

B.2 Find an expression for the total rate of change inmomentumΔ𝑝z/Δ𝑡 of the gas,
in the z-direction which is normal to the wall, due to collisions with the wall.

0.8pt

B.3 Derive an equation of state for an ultra relativistic electron gas, relating the
pressure, volume and total internal energy.

0.6pt
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B.4 Derive a relationship between the pressure and volume of an ultra relativistic
electron gas undergoing an adiabatic expansion.

0.6pt

Part C: Synchrotron emission
In the jets from AGN, we have populations of highly energetic electrons in regions with strong magnetic
fields. This creates the conditions for the emission of high fluxes of synchrotron radiation. The electrons
are often so highly energetic, that they can be described as ultra relativistic with 𝛾 ≫ 1.

C.1 Find an expression for Ω, the angular frequency of gyration of an electron with
lorentz factor 𝛾 and travelling at an angle 𝜙 to the magnetic field 𝐵.

0.7pt

As the electron is accelerated due to the magnetic field it emits electromagnetic radiation. In a frame at
which the electron ismomentarily at rest, there is no preferred direction for the emission of the radiation.
Half is emitted in the forward direction, and half in the backward direction. However, in the frame of the
observer, for an electron moving at an ultra relativistic speed, with 𝛾 ≫ 1, the radiation is concentrated
in a forward cone with 𝜃 ≲ 1/𝛾 (so the total angle of cone is 2/𝛾). As the electron is gyrating around the
magnetic field, any observer will only see pulses of radiation as the forward cone sweeps through the
line of sight.

Figure 3: The diagram on the left shows the distribution of power in radiation from an elec-
tron accelerating up the page in the frame at which the electron in momentarily at rest. The
diagram on the right shows the distribution of power in radiation for the same electron in the
observer's frame, wheremost radiation is emitted in the forward cone. In the observers frame,
the direction of the electron's acceleration is shown by a vector labelled a and the direction of
its velocity is shown by a vector labelled v.

C.2 Find the duration of a pulse, Δ𝑡, of synchrotron radiation observed from an
electron with lorentz factor 𝛾, travelling at an angle 𝜙 to the magnetic field.

0.5pt

C.3 Hence, estimate the characteristic frequency, 𝜈chr, of the synchrotron radiation. 0.3pt

The total synchrotron power emitted is

𝑃s = 1
6𝜋𝜀0

(𝑞4𝐵2 sin2 𝜙
𝑚4𝑐5 ) 𝐸2 (2)

C.4 Estimate the time, 𝜏 , for an electron of energy 𝐸 to lose its energy through
synchrotron cooling.

0.2pt
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Part D: Synchrotron emission from an AGN jet
The distribution of electron energies in a jet from an AGN is typically a power law, of the form 𝑓(𝜖) = 𝜅𝜖−𝑝,
where 𝑓(𝜖)𝑑𝜖 is the number density of particles with energies between 𝜖 and 𝜖 + 𝑑𝜖. The corresponding
spectrumof synchrotron emissiondepends on the electron energy distribution, rather than the spectrum
for an individual electron. This spectrum is

𝑗(𝜈)𝑑𝜈 ∝ 𝐵(1+𝑝)/2𝜈(1−𝑝)/2𝑑𝜈 . (3)

Here 𝑗(𝜈)𝑑𝜈 is the energy per unit volume emitted as photons with frequencies between 𝜈 and 𝜈 + 𝑑𝜈
Observations of the Centaurus A jet, and other jets, show a knotty structure, with compact regions of
brighter emission called knots. Observations of these knots at different times have shown both motion
and brightness changes for some knots. Two possible mechanisms for the reductions in brightness are
adiabatic expansion of the gas in the knot, and synchrotron cooling of electrons in the gas in knot.

The magnetic field in the plasma in the jets is assumed to be frozen in. Considering an arbitrary volume
of plasma, the magnetic flux through the surface bounding it must remain constant, even as the volume
containing the plasma changes shape and size.

D.1 For a spherical knot which expands uniformly in all directions from a volume of
𝑉0 to a volume 𝑉 , with an initial uniform magnetic field 𝐵0 Find the magnetic
field 𝐵 in the expanded knot.

0.4pt

D.2 Find 𝑓(𝜖), the distribution of electron energies after adiabatic expansion of a
spherical knot to a volume 𝑉 on the distribution of electron energy densities,
given that the knot of volume 𝑉0 has an initial distribution of electrons 𝑓0(𝜖) =
𝜅0𝜖−𝑝, where 𝑓0(𝜖)𝑑𝜖is the number density of particles with energies between
𝜖and 𝜖 + 𝑑𝜖.

1.0pt

D.3 How will synchrotron cooling affect the distribution of the electrons? After a
time interval where electrons have been undergoing synchrotron cooling, will
the distribution of electron energies as a function of 𝜖 be steeper, shallower
or leave it unchanged. Justify your answer with equations, by considering two
electron energies 𝜖1 < 𝜖2.

0.3pt

The table below summarises some observations of knots (brighter regions) in jets from two AGN, Cen-
taurus A (Cen A) and M87.

AGN Time between ob-
servations

Knot Brightness
change in x-rays

Spectral
changes in
x-rays

Brightness
changes in other
bands (e.g. UV,
optical)

Cen A 15 years AX1C -23% No change No data
Cen A 15 years BX2 -15% No change No data
M87 5 years HST-1 -73% No data No change
M87 5 years Knot A -12% No data No change

(Data from Snios et al., 2019a; 2019b.)
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D.4 In the table in the answer sheet, identify themore likely cause of reducedbright-
ness for each knot, and identify which previous part or parts support your con-
clusion.

0.6pt
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Question 2: X-ray jets from active galactic nuclei

Solutions

Part A: 1d fluid model of a jet

A1

If you consider a prism of plasma in the jet frame, it contains a number of particles N , has length l in the direction
of motion, and cross sectional area A. The total number of particles in the volume is invariant on transformation into
the AGN frame, however the volume occupied by the plasma changes as lengths are contracted in the direction of
motion, while perpendicular lengths are unchanged. Hence, A′ = A, and l′ = l/γ.

This gives us two relationships:

N = n(s)Al (1)

and
N = n′(s)Al/γ (2)

Equating these gives
n(s)Al = n′(s)Al/γ ,

which leads to
n′(s) = γn(s) . (3)

A2

The particles in the jet have a bulk flow speed of v(s), so in a time ∆t a volume V = A(s)v(s)∆t crosses the cross
section of the jet. Using the number density in the AGN frame,

Fp(s) = n′(s)A(s)v(s) (4)

= γ(s)n(s)A(s)v(s) (5)

A3

As the plasma travels along the jet there are no particles passing through the side boundary of the jet. Hence, the
total flux through the curved edges of the jet is zero, and the total flux into the jet is the flux in through the cross
section at s1 is Fp(s1) and the total flux out of the jet is Fp(s2). There is an additional term in the continuity equation
due to the mass injection. There are αV/µpp particles injected.

This gives
γ(s2)v(s2)n(s2)A(s2)− γ(s1)v(s1)n(s1)A(s1) = αV/µpp (6)

A4

Similarly, in the AGN frame the energy flux

FE(s) = n′(s)A′(s)v(s)ǫ′av(s) . (7)

We use previous results for all quantities except average energy per particle.
Consider the total energy in a volume ∆V of the plasma, Etot = ǫavN in the jet frame. As this is the proper frame

v(s)=0.
Transforming to the AGN frame, E′

tot = γ(s)ǫavN , and ǫ′av = γǫav.
Hence,

FE(s) = (γ(s))
2
n(s)A′s)v(s)ǫav(s) . (8)

Energy conservation requires that the total energy flux out of the jet is equal to the energy added through injection
of mass, so

(γ(s2))
2
v(s2)n(s2)A(s2)ǫav(s2)− (γ(s1))

2
v(s1)n(s1)A(s1)ǫav(s1) = αV c2 (9)

1



A5

From the defintion of jet power and also (8),

Pj(s) = (γ(s))2 n(s)A′s)v(s)ǫav(s)− Ṁc2 . (10)

Here Ṁ is the flux of mass flux across the surface, so Ṁ = Fp(s)µpp and

Pj(s) = (γ(s))
2
n(s)A′s)v(s)ǫav(s)− Fp(s)µppc

2 . (11)

In order to find how jet power varies along the jet, we consider jet power at two points along the jet.

Pj(s2)− Pj(s1) = (γ(s2))
2 n(s2)A

′(s2)v(s2)ǫav(s2)− Fp(s2)µppc
2 (12)

−
(

(γ(s2))
2
n(s1)A

′(s1)v(s1)ǫav(s1)− Fp(s1)µppc
2
)

. (13)

We can identify the two terms with ǫav to be those from the left hand side of (8), and the two terms with µpp are
µppc

2 times the left hand side of (6). Making these substitutions,

Pj(s2)− Pj(s1) = αV c2 − αV c2 = 0 . (14)

This argument applies to arbitary s1 and s2, so the jet power is constant along the jet and
dPj

ds = 0.

A6

We start from (10) and substitute ǫav = µppc
2 + 13

4
P
n , to arrive at

Pj(s) = (γ(s))
2
n(s)A(s)v(s)(µppc

2 +
13

4

P

n(s)
)− γ(s)n(s)A(s)v(s)µppc

2 (15)

= (γ(s)− 1)γ(s)n(s)A(s)v(s)µppc
2 + (γ(s))

2
A(s)v(s)

13

4
P (16)

= (γ(s)− 1)Ṁc2 + (γ(s))
2
A(s)v(s)

13

4
P (17)

Rearranging to find Ṁ gives

Ṁ =
Pj − γ(s)2A(s)v(s)134 P

(γ(s)− 1)c2
(18)

Using the relationship P (s) = 5.7 × 10−12
(

s
s0

)

−1.5

and substituting values for s1 and s2 respectively into (18),

give Ṁ1 = 2.8× 1019 kg s−1 and Ṁ2 = 5.2× 1019 kg s−1 .
Note: some of the input values are given to one significant figure only. Hence, answers which are correct to this

degree of precision and are given to one or two significant figures are accepted as correct.

A7

From lorentz transforming ǫav from the jet frame where v = 0 to the AGN frame, the average momentum per particle

is pav = γ(s)v(s)c2 ǫav. As the momentum is directly proportional to the total energy, the flux argument is the same,
and

Π(s) =
FE

c

v(s)

c
. (19)

This can be related to the jet power and Ṁ ,

Π(s) =

(

Pj

c
+ Ṁc

)

v(s)

c
. (20)

Again, there is no particle flux, and hence no momentum flux through the sides of the jet, so the total momentum
flux out of the jet is

Π = Π(s2)−Π(s1) . (21)

Substituting values for the jet at s2 and s1 gives Π = 1.9× 1027 kgm s−2.

2



A8

The total force on the jet due to external pressure has contributions from the cross section at s1, F1 = P (s1)A(s1), at ss,
F2 = P (s2)A(s2), and from the pressure on the curved surface. We have a linear relationship s(r) = s1+

s2−s1
r2−r1

(r−r1).

s
2
=5.94 kpc

s
1
=252 pc

AGN

r
2
=500 pc

r
1
=30 pc

v
1
=0.667c

v
2
=0.52c

dr
ds

The nett pressure force on the surface is only the component in the s direction. As the force is perpendicular to the
surface, this results in a factor of dr

ds . Consequently

dF = 2πrP (s)dr , (22)

where P (s) = 5.7× 10−12
(

s
s0

)

−1.5

.

The total force due to the external pressure,

FPr = F1 − F2 +

∫ r2

r1

dF . (23)

Evaluating the integral gives
∫ r2
r1

dF = 9.8× 1026 N, so FPr = 8.2× 1026 N.

A9

As there are no other forces on the jet, it is expected that Π = FPr.
The % deviation is |(Π− FPr)/FPr| ≈ 40%

Gas of ultrarelativistic electrons

B1

The total energy per volume is
∫

∞

0

ǫf(ǫ)dǫ

B2

Consider the particles colliding with a surface ∆A,with the normal to the surface in the z-direction, in time ∆t. As
the electrons are ultrarelativistic, theirs speeds are all approximately c. We assume that the collisions with wall are
elastic, and electrons depart with their parallel mometnum unchanged and pz, final = −pz. Hence, ∆pz = 2pz, where
pz = ǫ

c cos θ, since the electrons are ultrarelativistic and E ≈ pc.
The distribution is isotropic so electrons are equally likely to be travelling in any direction.
All electrons within a parallelepiped of length c∆t which approach the surface at an angle θ will hit it in the time

∆t. The volume of the paralleleiped is c∆t∆A cos θ. From here, the total change in momentum is

∆pz =

∫

∞

0

∫ π/2

0

∫ 2π

0

2f(ǫ)pzc∆t∆A cos θ
sin θ

4π
dφdθdǫ (24)

=
2∆t∆A

4π

∫ π/2

0

sin θ cos2 θdθ

∫ 2π

0

dφ

∫

∞

0

ǫf(ǫ)dǫ (25)

=
2∆t∆A

4π
×

1

3
× 2π

∫

∞

0

ǫf(ǫ)dǫ (26)

3



B3

As the remaining integral in the expression above was identified as the energy per volume in B1, ∆pz = ∆t∆A1
3
E
V .

The pressure is the force per area normal to the wall, so P = ∆pz

∆t
1

∆A . Combining these gives P = E
3V , or E = 3PV ,

which is the equation of state.

B4

For an adiabatic process dQ = 0 so dE = dW = −PdV . dE = d(3PV ) = 3PdV +3V dP , so equating these expressions
gives

3PdV + 3V dP = −pdV (27)

4PdV = −3V dP (28)

4
dV

V
= −3

dP

P
(29)

4

∫ V

V0

dV ′

V ′
= −3

∫ P

P0

dP ′

P
(30)

4 ln

(

V

V0

)

= −3 ln

(

P

P0

)

(31)

PV 4/3

P0V
4/3
0

= 1 (32)

Synchrotron emission

C1

An electron in a magnetic field has a component of its velocity, v cosφ along the magnetic field, and v sinφ perpen-
dicular to the field. The parallel component of the velocity remains constant, but in the perpendicular direction the
electron experiences a force in a direction perpendicular to its motion, so it undergoes simple harmonic motion. The
perpendicular component of its velocity is Ωr where Ω is its angular frequency and r the radius of the circular motion.
The force on the electron is FB = qv × B = eΩrB sinφ. The acceleration of the electron is perpendicular to the
direction of motion, so FB = γma, where a is the acceleration and m the mass of the electron. For uniform circular
motion, a = −Ω2r, so

FB = γmΩ2r (33)

eΩrB sinφ = γmΩ2r (34)

Ω =
eB sinφ

γm
(35)

C2

The observer only sees the synchrotron emission when they are within the forward light cone. As the electron is
gyrating around the magnetic field, this direction is changing. The observer is in this light cone for time ∆t = 2θ

Ω = 2m
eB .

However, the emitting electron is moving directly toward the observer over this time, so although the light emitted at
the start of the pulse is ahead of the light at the end of the pulse, it is only ahead by c∆t

(

1− v
c

)

. The pulse then has
an apparent duration of

∆ta = ∆t
(

1−
v

c

)

.

Since
(

1− v
c

) (

1 + v
c

)

= 1 − v2

c2 = 1
γ2 , we can write

(

1− v
c

)

= 1

γ2(1+ v

c
)
. As the electrons are ultrarelativistic,

(

1 + v
c

)

= 2, and

∆ta =
me

γ2eB
.

C3

νchr ≈
1

∆ta
=

γ2eB

me

4



C4

Making a linear approximation,

τ ≈ −
E

(

dE
dt

) (36)

=
6πε0m

4c5

e4B2 sin2 φ

1

E
(37)

Synchrotron emission from an AGN jet

D1

As the magnetic field is frozen in, and magnetic flux is constant, the magnetic field must decrease as the area increases
in the expansion.

For a small area A, B0A0 = BA. Since A ∝ V 2/3, B = B0(A0/A) = B0

(

V
V0

)

−2/3

D2

A volume of plasma V0 with number density n0 contains a total number of particles N = n0V0. As the volume expands,
the total number remains constant, so n = N/V = (V/V0)n0.

The internal energy of the plasma E = 3PV , and since PV 4/3 = P0V
4/3
0 , EV 1/3 = E0V

1/3
0 . The scaling for

particle energy with volume is then E = (V/V0)
−1/3E0. This means that the particles initially with energies between

ǫ0 and ǫ+dǫ, will have energies between (V/V0)
−1/3ǫ0 and (V/V0)

−1/3 (ǫ+ dǫ). As ((V/V0)
−1/3ǫ)−p = (V/V0)

−p/3ǫ−p.
Hence, we can write

f(ǫ) = κǫ−p .

The value of κ is determined by the relationship

∫

∞

0

κǫ−pdǫ = N/V .

Given
∫

∞

0

κ0ǫ
−pdǫ = N/V0

κ0V0 = κV , and

f(ǫ) =

(

V

V0

)

−1

κ0ǫ
−p

D3

As the energy loss rate due to synchrotron emission increases as E2, and the cooling time decreases as 1/E, the more
energetic electrons lose energy more rapidly. If we consider electrons with energies ǫ1 < ǫ2, both will move to lower
energies in the distribution, but df/dt ∝ E2, so df

dt |ǫ2 > df
dt |ǫ1 . This will reduce the relative number of electrons with

higher energies, and steepen the power law of the electron energy distribution.

D4

For the knots in Centaurus A there is no change in the x-ray spectrum, so this rules out synchrotron cooling as in
that case the spectrum would steepen (Part D3). Hence adiabatic cooling is more likely for these two knots.

For the knots in M87, there is no change in brightness in other bands. Adiabatic expansion would reduce the number
density at all energies (Part D2) and hence brightness at all wavelengths, so this is not likely. Hence, synchrotron
cooling is more likely for these two knots.

5
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Tippe top

Part A (10.0 points)
A Tippe top is a special kind of top that can spontaneously invert once it has been set spinning. One
can model a Tippe top as a sphere of radius 𝑅 that is truncated, with a stem added. It has rotational
symmetry about an axis through the stem, which is at angle 𝜃 from the vertical. As shown in Figure 1(a),
its centre of mass 𝐶 is offset from its geometric centre 𝑂 by 𝛼𝑅 along its symmetry axis. The Tippe top
makes contact with the surface it rests on at point 𝐴; we assume this surface is planar, and refer to it as
the floor. Given certain geometrical constraints and if spun fast enough initially, the Tippe top will tip so
that the stem points increasingly downwards, until it starts to spin on in its stem, and eventually comes
to a stop.

Figure 1. Views of the Tippe top (a) from the side and (b) from above

Let 𝑥𝑦𝑧 be the rotating reference frame defined such that ̂z is stationary and upwards, and the top's
symmetry axis is within the 𝑥𝑧-plane. Two views of the Tippe top are shown in Figure 1: from the side,
and from above. As shown in Figure 1(b), the top's symmetry axis is aligned with the 𝑥-axis when viewed
from above.

Figure 2 shows the top's motion at several phases after it is started spinning:

(a) phase I: immediately after it is initially set spinning, with 𝜃 ∼ 0
(b) phase II: soon after, having tipped to angle 0 < 𝜃 < 𝜋

2

(c) phase III: when the stem first touches the floor, with 𝜃 > 𝜋
2

(d) phase IV: after inversion, when the top is spinning on its stem, with 𝜃 ∼ 𝜋
(e) phase V: in its final state, at rest on its stem 𝜃 = 𝜋.



Theory Q3-2
English (Official)

Figure 2. Phases I to V of the Tippe top's motion, shown in the 𝑥𝑧-plane

Let 𝑋𝑌 𝑍 be the inertial frame, where the surface the top is on is wholly in the 𝑋𝑌 -plane. The frame 𝑥𝑦𝑧
is defined as above, and reached from 𝑋𝑌 𝑍 via rotation around the 𝑍 axis by 𝜙 . The transformation
from the 𝑋𝑌 𝑍 frame to frame 𝑥𝑦𝑧 is shown in Figure 3(a). In particular, ̂z = Ẑ.

Figure 3. Transformations between reference frames: (a) to 𝑥𝑦𝑧 from 𝑋𝑌 𝑍 , and (b) to 123
from 𝑥𝑦𝑧

Any rotational motion in 3-dimensional space can be described by the three Euler angles (𝜃, 𝜙, 𝜓). The
transformations between the inertial frame 𝑋𝑌 𝑍, the intermediate frame 𝑥𝑦𝑧, and the top's frame 123
can be understood in terms of these Euler angles.

In our description of the Tippe top's motion, the angles 𝜃 and 𝜙 are the standard zenith and azimuthal
angles respectively, in spherical polar coordinates. In the 𝑋𝑌 𝑍 frame they are defined as follows: 𝜃 is
the angle of the top's symmetry axis from the vertical 𝑍-axis, representing how far from vertical its stem
is, while 𝜙 represents the top's angular position about the 𝑍-axis, and is defined as the angle between
the 𝑋𝑍-plane and the plane through points 𝑂, 𝐴, 𝐶 (i.e. the vertical projection of the top's symmetry
axis).

The third Euler angle 𝜓 describes the rotation of the top about its own symmetry axis, i.e. its 'spin', which
has angular velocity ̇𝜓.
The reference frame of the spinning top is defined as a new rotating frame 123, which is reached by rotat-
ing 𝑥𝑦𝑧 by 𝜃 around ŷ: 'tilting' the ̂z-axis down by 𝜃 tomeet the top's symmetry axis 3̂. The transformation
from the 𝑥𝑦𝑧 frame to the 123 frame is shown in Figure 3(b). In particular, 2̂ = ŷ.
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NOTE: For a reference frame K̃ rotating in inertial frame K with angular velocity 𝜔𝜔𝜔 , the time deriva-
tives of a vector A within both frames K and K̃ are related via:

(𝜕A
𝜕𝑡 )

K
= (𝜕A

𝜕𝑡 )
K̃

+ 𝜔𝜔𝜔 × A (1)

Themotion that a Tippe top undergoes is complex, involving the time evolution of the three Euler angles,
as well the translational velocities (or positions) and the motion of the top's symmetry axis. All of these
parameters are coupled. To solve for the motion of a Tippe top, one would use standard tools including
Newton's laws to prepare the system of equations, then program a computer to solve them numerically
via simulation.

In this question, you will perform the first part of this process, investigating the physics of the Tippe top
to set up the system of equations.

Friction between the Tippe top and the surface it ismoving on drives themotion of the Tippe top. Assume
that the top remains in contact with the floor at point 𝐴, until such time as the stem contacts the floor. It
is in motion at point 𝐴 with velocity v𝐴 relative to the floor. The frictional coefficient 𝜇𝑘 between the top
and floor is kinetic, with |Ff| = 𝜇𝑘𝑁 , where F𝑓 = 𝐹𝑓,𝑥x̂+𝐹𝑓,𝑦ŷ is the frictional force, and𝑁 is themagnitude
of the normal force. Assume that the top is initially set spinning only, i.e. there is no translational impulse
given to the top.

Let the mass of the Tippe top be 𝑚. Its moments of inertia are: 𝐼3 about the axis of symmetry is, and
𝐼1 = 𝐼2 about the mutually perpendicular principal axes. Let s be the position vector of the centre of
mass, and a = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝐴 be the vector from the centre of mass to the point of contact.

Unless otherwise specified, give your answers in the 𝑥𝑦𝑧 reference frame for full marks. All torques and
angular momentum are considered about the centre of mass 𝐶, unless otherwise specified. You may
give your answers in terms of 𝑁 . Except for part A.8, you need only consider the top where 𝜃 < 𝜋

2 , and
the stem is not in contact with the floor.

A.1 Find the total external force Fext on the Tippe top. Draw a free body diagram of
the top, projected onto each of the 𝑥𝑧- and 𝑥𝑦-planes. Indicate the direction of
v𝐴 in the space provided, on your diagram in the 𝑥𝑦-plane.

1pt

A.2 Find the total external torque 𝜏𝜏𝜏ext on the Tippe top about the centre of mass. 0.8pt

A.3 Given the contact condition, i.e. (s + a) ⋅ ̂𝑧 = 0, show that the velocity at 𝐴 has
no component in the 𝑧-direction, i.e. we can write v𝐴 = 𝑣𝑥x̂ + 𝑣𝑦ŷ.

0.4pt

A.4 Find the total angular velocity 𝜔 of the rotating top about its centre of mass 𝐶
in terms of the time derivatives of the Euler angles: ̇𝜃 = 𝑑𝜃

𝑑𝑡 , ̇𝜙 = 𝑑𝜙
𝑑𝑡 , and ̇𝜓 = 𝑑𝜓

𝑑𝑡 .
Use Figure 3 if this is helpful. Give your answer in the 𝑥𝑦𝑧 frame, and in the 123
frame.

0.8pt

A.5 Find the total energy of a spinning Tippe top, in terms of time derivatives of the
Euler angles, 𝑣𝑥, and 𝑣𝑦. For partial marks, you may leave your answer in terms
of ̇s= 𝑑s

𝑑𝑡 .

1pt
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A.6 Find the rate of change of the angular momentum about the 𝑧-axis. 0.4pt

A.7 Which force(s) do work against gravity? Find an expression for the instanta-
neous rate of change of the top's energy - you may leave your answer in terms
of v𝐴. Identify and identify the components of the force and the torque that
cause the change(s) in energy terms in A.5.

1.4pt

A.8 Qualitatively sketch the following energy terms in the answer sheet as a func-
tion of time, over the top'smotion through the five phases I toV shown in Figure
2: the total energy 𝐸𝑇 , gravitational potential energy 𝑈𝐺, translational kinetic
energy 𝐾𝑇 , and rotational kinetic energy 𝐾𝑅. The energy axes of your sketches
are not required to be to scale.

2pt

A.9 Show that the components of the angular momentum L and angular velocity 𝜔𝜔𝜔
that are perpendicular to the 3̂ direction are proportional, i.e.

L × 3̂ = 𝑘(𝜔𝜔𝜔 × 3̂), (2)

and find the proportionality constant 𝑘.

0.5pt

Combining your answers to A.1 and A.2 with subsequent results will give you the magnitude 𝑁 of the
normal force, as well as a system of equations, relating the Euler angles, the components 𝑣𝑥 and 𝑣𝑦 of
the velocity at 𝐴, the unit vector for the axis of symmetry 3̂, and their time derivatives. This system is not
integrable, but instead could be solved numerically.

Integrals of motion are quantities which remain constant, and can reduce the dimensionality of the sys-
tem (i.e. number of simultaneous equations to solve, whether analytically or numerically). Typically
quantities such as energy, momentum, and angular momentum are conserved in closed systems, and
significantly simplify the problem.

A.10 As youhave seen, neither the energy nor the angularmomentumare conserved
for a Tippe top, due to a dissipative force and external torque. However, there is
a related quantity knownas Jellett's integral 𝜆, which represents a component of
the angular momentum that is conserved, i.e. some vector v. such that 𝜆 = L ⋅v
is constant in time.
 
Use your understanding of the Tippe top and results found to far, to give an
expression for such a vector v. Show that the time derivative of 𝜆 is zero.

1.7pt
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Question 3: Tippe Top

Solutions

Reference sheet for markers

Note: some results below were used for the previous version of part A.10, and are no longer needed.

Coordinate systems for convenience (note: use of matrices not needed) xyz from XY Z





x̂

ŷ

ẑ



 =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1









X̂

Ŷ

Ẑ





123 from xyz





1̂

2̂

3̂



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









x̂

ŷ

ẑ





Position of point A from centre of mass, in xyz and 123 frames:

a = αR3̂−Rẑ (1)

= αR sin θx̂+R(α cos θ − 1)ẑ

= R sin θ1̂+R(α− cos θ)3̂

Useful products:

ẑ× 3̂ = sin θŷ (2)

(3)

Note (given in question):

(

∂A

∂t

)

K

=

(

∂A

∂t

)

K̃

+ ω ×A (4)

Time derivatives:

˙̂
3 = ω × 3̂ (5)

˙̂x = φ̇ŷ (6)

˙̂y = −φ̇x̂ (7)

1



Solutions: Tippe Top

1. (1.0 marks)

Free body diagrams:

x

z

mg

F
fr

N

mg
N

F
fr

v
A

x

y

Note: the direction of Ff must be opposite to the direction of vA, but is otherwise unimportant. Sum of
forces:

Fext = (N −mg)ẑ + Ff (sufficient for full marks) (8)

= (N −mg)ẑ −
µkN

|vA|
vA

Sketched vA must be in opposite direction to Ff on xy diagram.

2. (0.8 marks)

Sum of torques:

τ ext = a× (N ẑ+ Ff ) (9)

= (αR3̂−Rẑ)× (N ẑ+ Ff,xx̂+ Ff,yŷ)

= αRN 3̂× ẑ+ αR(sin θx̂ + cos θẑ)× (Ff,xx̂+ Ff,yŷ)−Rẑ× (Ff,xx̂+ Ff,yŷ)

= −αRN sin θŷ + αR sin θFf,yẑ+ αR cos θFf,xŷ − αR cos θFf,yx̂−RFf,xŷ +RFf,xx̂

= RFf,y(1 − α cos θ)x̂+ [RFf,x(α cos θ − 1)− αRN sin θ] ŷ + αR sin θFf,y ẑ (10)

3. (0.4 marks)

Motion at A satisfies

vA = ṡ+ ω × a (11)

where ω is the total angular velocity of the top in the centre of mass frame (this is deteremined in the
next part). Want to show that vA · ẑ = 0.

To show this, take time derivative of contact condition in XY Z or xyz frame (note: either is suitable, as

2



we only need the ẑ component, and ẑ = Ẑ).

Contact condition:

(s + a) · ẑ = 0 at all times (12)

⇒
d

dt
(s+ a) · ẑ = 0 at all times

Note we only care about the z-component, and (ω × ẑ) · ẑ = 0. Then, using 11, 1, and 5,

vA · ẑ = (ṡ+ ω × a) · ẑ

=
(

ṡ+ αRω × 3̂
)

· ẑ

=

(

ṡ + αR
d3̂

dt

)

· ẑ

= (ṡ+ ȧ) · ẑ = 0 (13)

4. (0.8 marks)

Total angular velocity ω of top is the sum of three distinct rotations:

ω = θ̇2̂+ φ̇ẑ+ ψ̇3̂

Use transformations shown in figure 3 or otherwise to transform into xyz or 123 frame:

ω = ψ̇ sin θx̂+ θ̇ŷ + (ψ̇ cos θ + φ̇)ẑ (14)

ω = −φ̇ sin θ1̂+ θ̇2̂+ (ψ̇ + φ̇ cos θ)3̂ (15)

5. (1.0 marks)

Where I is the inertia tensor




I1 0 0
0 I1 0
0 0 I3,





we have

ET = KT +KR + UG

=
1

2
ω · Iω +

1

2
mṡ2 +mgR(1− α cos θ)

From 11,

ṡ = vA − ω × a

= vA − (θ̇2̂+ φ̇ẑ+ ψ̇3̂)× (αR3̂−Rẑ)

= vxx̂+ vyŷ −
(

θ̇αR1̂− θ̇Rẑ+ φ̇αRẑ× 3̂− ψ̇R3̂× ẑ
)

=
(

vx + θ̇R(1− α cos θ)
)

x̂+
(

vy −R sin θ(αφ̇ + ψ̇)
)

ŷ + θ̇αR sin θẑ

using 2. Thus

ET =
1

2

[

I1(φ̇
2 sin2 θ + θ̇2) + I3(ψ̇ + φ̇ cos θ)2

]

+
m

2

[

(

vx + θ̇R(1− α cos θ)
)2

+
(

vy −R sin θ(αφ̇ + ψ̇)
)2

+ θ̇2α2R2 sin2 θ

]

+mgR(1− α cos θ)

3



6. (0.4 marks)

From 10,

dL

dt
· ẑ =

∑

τ · ẑ = αR sin θFf,y (16)

7. (1.4 marks)

Changes in energy: h = s · ẑ increases, so U̇G > 0.

At start and end (phases I and V) there is little translation so KT ∼ 0 at I and V. Thus, energy
transfer is from KR to UG.

Normal force does no work. Frictional force does work at point A. Direction is −vA:

W =

∫

Ff · vA dt < 0

⇒
d

dt
ET = −µkN |vA|

Thus Ff decreases the total energy monotonically.

16 implies only the Ff .ŷ acts to decrease L · ẑ. Energy transfer from KR to UG, caused by compo-
nent of frictional force in ŷ direction, so component of resultant torque is in the a× ŷ direction.

8. (2.0 marks)

Expectation (see figure):

• ET : monotonically decreasing

• KR: monotonically decreasing;
zero at V

• KT : zero at I and V; higher be-
tween; close to zero at IV

• UG: flat at start and finish; higher
at end; increases from I to IV then
flat; increase roughly at same
time that Krot decreases

t
(I) (II) (III) (IV) (V)

E
T

t
(I) (II) (III) (IV) (V)

U
G

t
(I) (II) (III) (IV) (V)

K
T

t
(I) (II) (III) (IV) (V)

K
R

monotonically decreasing

constant, =U
G

on stem

rising

non-zero

at rest
spinning slows

spinning upright,

so K
T
 is small

4



9. (0.5 marks)

From 15,

L = Iω = I1

(

−φ̇ sin θ1̂+ θ̇2̂
)

+ I3(ψ̇ + φ̇ cos θ)3̂ (17)

Taking cross product with 3̂:

L× 3̂ = I1

(

φ̇ sin θ2̂+ θ̇1̂
)

= I1(ω × 3̂) (18)

10. (1.7 marks)

About any axis through the centre of mass,

dL

dt
6= 0 ⇔ τext 6= 0

External torque given by 9,

τ ext = a× (N ẑ+ Ff )

⇒ τext · a = 0

dL

dt
· a = 0

Thus, angular momentum in the direction of a must be constant, so v = a.

To demonstrate this mathematically, 5, 10, 18 allow

−λ̇ =
dL

dt
· a+ αRL ·

d3̂

dt

= (a× (N ẑ+ Ff )) · a+
αR

I1
L · (ω × L)

= 0

5
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