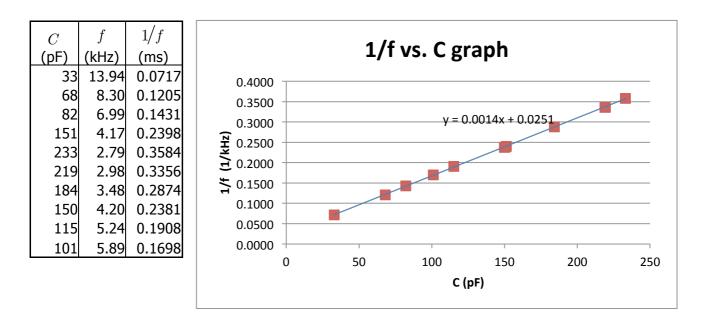


Part 1. Calibration

From the relationship between f and C given,

$$f = \frac{\alpha}{C + C_s} \qquad \Leftrightarrow \qquad \frac{1}{f} = \frac{1}{\alpha}C + \frac{C_s}{\alpha}$$

That is, theoretically, the graph of $\frac{1}{f}$ on the Y-axis versus C on the X-axis should be linear of which the slope and the Y-intercept is $\frac{1}{\alpha}$ and $\frac{C_s}{\alpha}$ respectively. The table below shows the measured values of C (plotted on the X-axis,) f and, additionally, $\frac{1}{f}$, which is plotted on the Y-axis.



From this graph, the slope $(1/\alpha)$ and the Y-intercept (C_s/α) is equal to 0.0014 s/nF and 0.0251 ms respectively.

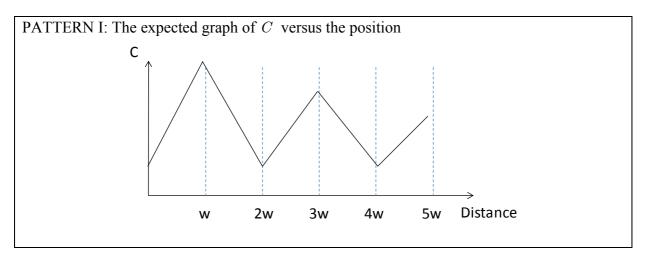
Hence,

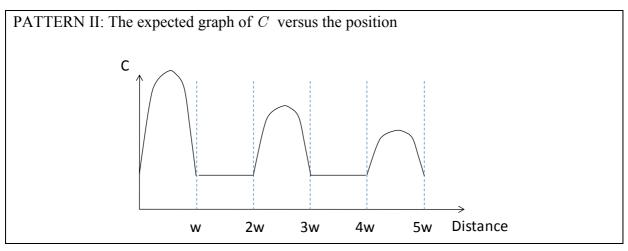
$$\alpha = \frac{1}{\text{slope}} = \frac{1}{0.0014 \text{ s / nF}} = 714 \text{ nF/s}$$

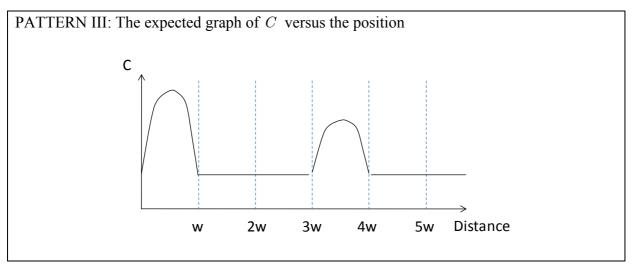
$$C_s = \frac{\text{Y - intercept}}{\text{slope}} = \frac{0.0251 \text{ ms}}{0.0014 \text{ s / nF}} = 17.9 \text{ pF} \text{ as required.}$$

and

Part II. Determination of geometrical shape of parallel-plates capacitor

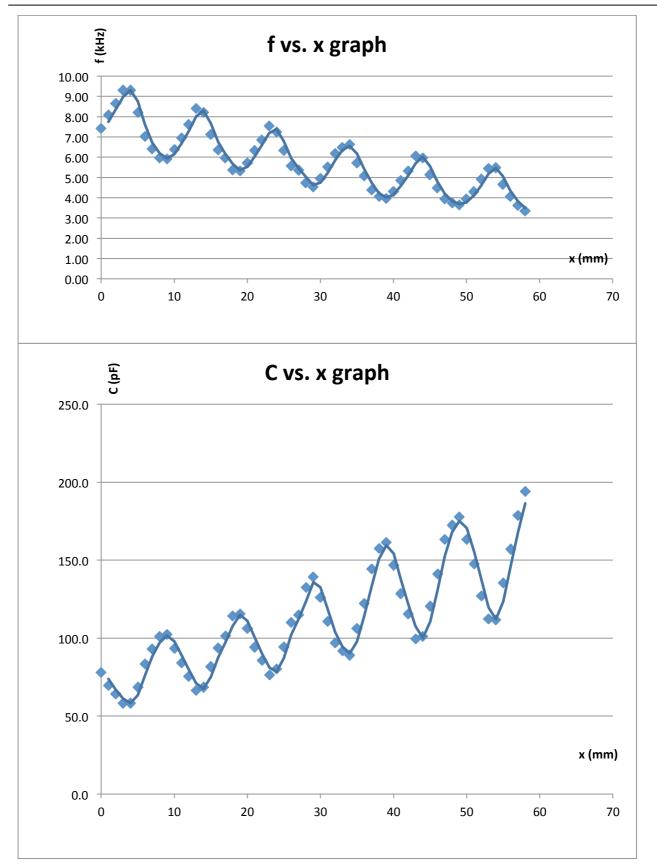






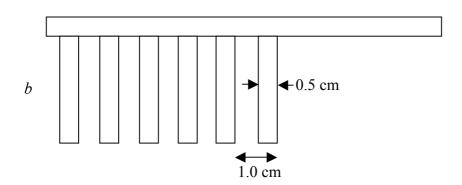
By measuring f and C versus x (the distance moved between the two plates,) the data and the graphs are shown below.

x (mm)	f (kHz)	C (pF)	x (mm)	f (kHz)	C (pF)
0	7.41	77.9	30	4.94	126.1
1	8.09	69.8	31	5.52	110.9
2	8.64	64.2	32	6.19	96.9
3	9.30	58.3	33	6.48	91.7
4	9.30	58.3	34	6.64	89.1
5	8.21	68.5	35	5.72	106.4
6	7.02	83.3	36	5.08	122.1
7	6.40	93.1	37	4.39	144.2
8	5.98	100.9	38	4.06	157.4
9	5.91	102.4	39	3.97	161.4
10	6.38	93.5	40	4.32	146.8
11	6.96	84.1	41	4.86	128.5
12	7.61	75.4	42	5.33	115.5
13	8.40	66.5	43	6.05	99.6
14	8.20	68.6	44	5.98	100.9
15	7.13	81.7	45	5.14	120.5
16	6.37	93.6	46	4.47	141.3
17	5.96	101.3	47	3.93	163.3
18	5.38	114.3	48	3.74	172.5
19	5.33	115.5	49	3.64	177.7
20	5.72	106.4	50	3.93	163.3
21	6.34	94.2	51	4.30	147.6
22	6.85	85.8	52	4.91	127.0
23	7.53	76.4	53	5.46	112.3
24	7.23	80.3	54	5.49	111.6
25	6.33	94.3	55	4.64	135.4
26	5.56	110.0	56	4.07	157.0
27	5.36	114.8	57	3.62	178.8
28	4.73	132.5	58	3.36	194.1
29	4.53	139.2			

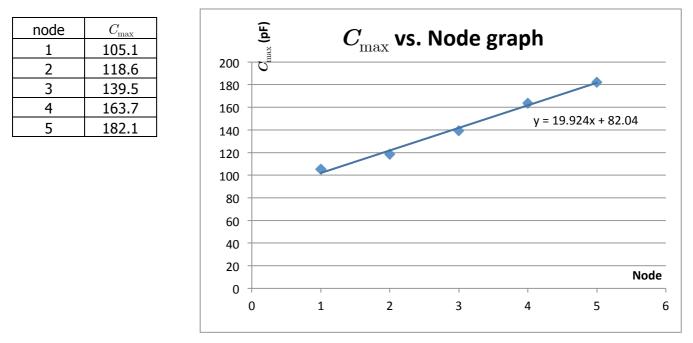


From periodicity of the graph, period = 1.0 cm

Simple possible configuration is:



The peaks of C values obtained from the C vs. x graph are provided in the table below. These maximum C are plotted (on the Y-axis) vs. nodes (on the X-axis.)



This graph is linear of which the slope is the dropped off capacitance $\Delta C = 19.9$ pF/section.

Given that the distance between the plates d = 0.20 mm, K = 1.5,

$$\Delta C \approx rac{K arepsilon_0 A}{d},$$

 $A = \left(5 imes 10^{-3} \,\mathrm{m}\right) imes \left(b \,\mathrm{mm}\right) imes 10^{-3} \,\mathrm{m}^2$

and

Then, $b(\text{mm}) \approx \frac{(\Delta C)d}{K\varepsilon_0 \times 10^{-3} \times 5 \times 10^{-3}} \approx 60 \text{ mm}$ if medium between plates is the dielectric of which K = 1.5.

Part III. Resolution of digital micrometer

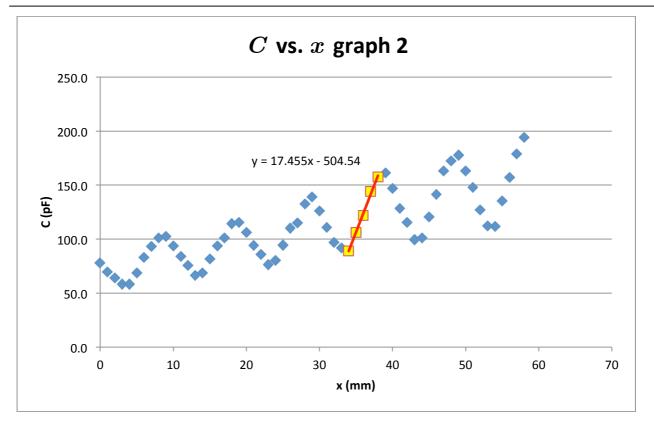
From the given relationship between f and C, $f = \frac{\alpha}{C + C_s}$, $\Delta f \simeq \left| \frac{df}{dC} \right| \Delta C = \left| \frac{-\alpha}{(C + C_s)^2} \right| \Delta C$ $= \frac{f^2}{\alpha} \Delta C$ $\Leftrightarrow \qquad \Delta C = \frac{\alpha}{f^2} \Delta f$

And since C linearly depends on x, $C = mx + \beta \Rightarrow \Delta C = m\Delta x$. Hence,

$$\Delta x = \frac{\alpha}{mf^2} \Delta f \,,$$

where Δf is the smallest change of the frequency f which can be detected by the multimeter, x_0 is the operated distance at f = 5 kHz, and m is the gradient of the C vs. x graph at $x = x_0$.

From the f vs. x graph, at f = 5 kHz, the gradient is then measured on the C vs. x graph around this range.



From this graph, $m = 17.5 \text{ pF} / \text{mm} = 1.75 \times 10^{-8} \text{ F} / \text{m}$. Using this value of m, f = 5 kHz, $\alpha = 714 \text{ nF/s}$, and $\Delta f = 0.01 \text{ kHz}$,

$$\Delta x = \frac{714 \times 10^{-9}}{(1.75 \times 10^{-8})(5 \times 10^{3})^{2}} \times (0.01 \times 10^{3}) = 0.016 \text{ mm}$$

NB. The C vs. x graph is used since C (but not f) is linearly related to x.

Alternative method for finding the resolution

(not strictly correct)

Using the f vs. x graph and the data in the table around f = 5 kHz, it is found that when f is changed by 1 kHz ($\Delta f = 1$ kHz,)x is roughly changed by 1.5 mm ($\Delta x \simeq 1.5$ mm.) Hence, when f is changed by $\Delta f = 0.01$ kHz (the smallest detectable of the change,) the distance moved is $\Delta x \simeq 0.015$ mm.