2. Mechanical Blackbox: a cylinder with a ball inside

A small massive particle (ball) of mass m is fixed at distance z below the top of a long hollow cylinder of mass M. A series of holes are drilled perpendicularly to the central axis of the cylinder. These holes are for pivoting so that the cylinder will hang in a vertical plane.

Students are required to perform necessary nondestructive measurements to determine the numerical values of the following with their error estimates:
i. position of centre of mass of cylinder with ball inside.

Also provide a schematic drawing of the experimental set-up for measuring the centre of mass.
ii. distance z
iii. ratio M / m.
iv. the acceleration due to gravity, g.

Equipment: a cylinder with holes plus a ball inside, a base plate with a thin pin, a pin cap, a ruler, a stopwatch, thread, a pencil and adhesive tape.

Thin pin for pivoting
$x_{C M}$ is the distance from the top of the cylinder to the centre of mass.
R is the distance from the pivoting point to the centre of mass.

Caution: The thin pin is sharp. When it is not in use, it should be protected with a pin cap for safety.

Useful information:

1. For such a physical pendulum, $\left\{(M+m) R^{2}+I_{C M}\right\} \frac{d^{2} \theta}{d t^{2}} \approx-g(M+m) R \theta$, where $I_{C M}$ is the moment of inertia of the cylinder with a ball about the centre of mass and θ is the angular displacement.
2. For a long hollow cylinder of length L and mass M, the moment of inertia about the centre of mass with the rotational axis perpendicular to the cylinder can be approximated by $\frac{1}{3} M\left(\frac{L}{2}\right)^{2}$.
3. The parallel axis theorem: $I=I_{\text {centre of mass }}+\mathfrak{M} x^{2}$, where x is the distance from the rotation point to the centre of mass, and \mathfrak{M} is the total mass of the object.
4. The ball can be treated as a point mass and it is located on the central axis of the cylinder.
5. Assume that the cylinder is uniform and the mass of the end-caps is negligible.
