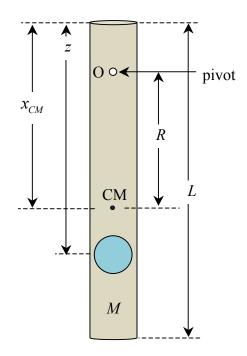


Question 2 Page 1 of 9

Solution: 2. Mechanical Blackbox: a cylinder with a ball inside



In order to be able to calculate the required values in i, ii, iii, we need to know:

- a. the position of the centre of mass of the tubing plus particle (object) which depends on z, m, M
- b. the moment of inertia of the above.

The position of the CM may be found by balancing. The I_{CM} can be calculated from the period of oscillation of the tubing plus object.

Analytical steps to select parameters for plotting

I.
$$x_{CM} = \frac{mz + M(L/2)}{m + M}$$
 (1)

L is readily obtainable with a ruler.

 $x_{\rm CM}$ is determined by balancing the tubing and object.

Q2 EXPERIMENT SOLUTION FINAL.DOCX 14 July 2011

Experimental Competition:

Question 2 Page 2 of 9

II. For small-amplitude oscillation about any point O the period T is given by considering the equation:

$$T = 2\pi \sqrt{\frac{I_{CM} + (M+m)R^2}{g(M+m)R}}$$
 (3)

where

$$I_{CM} = \frac{1}{3}M\left(\frac{L}{2}\right)^2 + M\left(x_{CM} - \frac{L}{2}\right)^2 + m(z - x_{CM})^2$$

$$= \frac{1}{3}ML^2 + Mx_{CM}^2 - MLx_{CM} + m(z - x_{CM})^2 \qquad (4)$$

Note that

$$T^{2} \frac{g(M+m)}{4\pi^{2}} = \frac{I_{CM}}{R} + (M+m)R$$
 (5)

Method (a): (linear graph method)

The equation (5) may be put in the form:

$$T^{2}R = \left(\frac{4\pi^{2}}{g}\right)R^{2} + \frac{4\pi^{2}I_{CM}}{(M+m)g}$$
 (6)

Hence the plot of T^2R v.s. R^2 will yield the straight line whose

Slope
$$\alpha = \frac{4\pi^2}{g}$$
 (7)

and y-intercept
$$\beta = \frac{4\pi^2 I_{CM}}{(M+m)g}$$
 (8)

Hence,
$$I_{CM} = (M+m)\frac{\beta}{\alpha}$$
 (9)

The value of g is from equation (7):
$$g = \frac{4\pi^2}{\alpha}$$
 (10)

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX Experimental Competition: 14 July 2011

Question 2

Page 3 of 9

Method (b): minimum point curve method

The equation (5) implies that T has a minimum value at

$$R = R_{\min} \equiv \sqrt{\frac{I_{CM}}{M+m}} \tag{11}$$

Hence R_{\min} can be obtained from the graph T v.s. R.

And therefore
$$I_{CM} = (M+m)R_{\min}^2$$
 (12)

This equation (12) together with equation (1) will allow us to calculate the required values z and M/m.

At the value
$$R = R_{\min}$$
 equation (5) becomes $T_{\min}^2 \frac{g(M+m)}{4\pi^2} = (M+m)R_{\min} + (M+m)R_{\min}$

$$g = \frac{2R_{\min}}{T_{\min}^2} \times 4\pi^2 = \frac{8\pi^2 R_{\min}}{T_{\min}^2}$$
 (13)

from which g can be calculated.

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX

Experimental Competition:

14 July 2011

Question 2

Page 4 of 9

Results

 $L = 30.0 \text{ cm} \pm 0.1 \text{ cm}$

 $x_{CM} = 17.8 \text{ cm} \pm 0.1 \text{ cm (from top)}$

$x_{CM} - R$	time (s) for 20 cycles			T(s)	R (cm)	R^2 (cm ²)	$T^2R(s^2cm)$
1.1	18.59	18.78	18.59	0.933	16.7	278.9	14.53
2.1	18.44	18.25	18.53	0.920	15.7	246.5	13.29
3.1	18.10	18.09	18.15	0.906	14.7	216.1	12.06
4.1	17.88	17.78	17.81	0.891	13.7	187.7	10.88
5.1	17.69	17.50	17.65	0.881	12.7	161.3	9.85
6.1	17.47	17.38	17.28	0.869	11.7	136.9	8.83
7.1	17.06	17.06	17.22	0.856	10.7	114.5	7.83
8.1	17.06	17.00	17.06	0.852	9.7	94.1	7.04
9.1	16.97	16.91	16.96	0.847	8.7	75.7	6.25
10.1	17.00	17.03	17.06	0.852	7.7	59.3	5.58
11.1	17.22	17.37	17.38	0.866	6.7	44.9	5.03
12.1	17.78	17.72	17.75	0.888	5.7	32.5	4.49
13.1	18.57	18.59	18.47	0.927	4.7	22.1	4.04
14.1	19.78	19.90	19.75	0.991	3.7	13.7	3.69
15.1	11.16	11.13	11.13	1.114	2.7	7.3	3.34
16.1	13.25	13.40	13.50	1.338	1.7	2.9	3.04

Notes: at $x_{CM} - R = 15.1$, 16.1cm, times for 10 cycles.

Q2 EXPERIMENT SOLUTION FINAL.DOCX

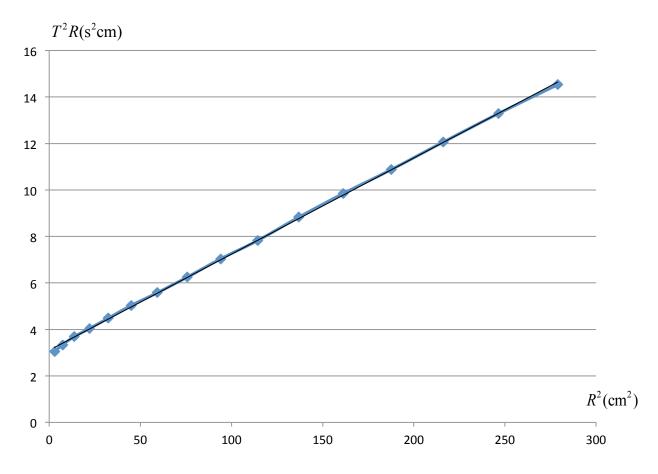
Experimental Competition:

14 July 2011

Question 2

Page 5 of 9

Method (a)



Calculation from straight line graph: slope $\alpha = 0.04108 \pm 0.0007 \,\mathrm{s}^2/\mathrm{cm}$, y-intercept $\beta = 3.10 \pm 0.05 \,\mathrm{s}^2 \mathrm{cm}$

$$g = \frac{4\pi^2}{\alpha} \text{ giving } g = (961 \pm 20) \text{ cm/s}^2$$

$$\frac{\beta}{\alpha} = \frac{3.10}{0.04108} = 75.46 \text{ cm}^2 (\pm 2.5 \text{ cm}^2)$$

$$I_{CM} = (M+m)\frac{\beta}{\alpha} = (75.46)(M+m)$$

From equation (4):
$$I_{CM} = \frac{1}{3}M\left(\frac{L}{2}\right)^2 + M\left(x_{CM} - \frac{L}{2}\right)^2 + m(z - x_{CM})^2$$

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX Experimental Competition: 14 July 2011

Question 2

Page 6 of 9

Then

$$(75.46)(M+m) = 75.0M + 7.84M + m(z-17.8)^{2}$$

$$-7.38\frac{M}{m} + 75.46 = (z - 17.8)^{2} \tag{14}$$

The centre of mass position gives:

$$17.8(M+m) = 15.0M + mz$$

$$\frac{M}{m} = \frac{z - 17.8}{2.8}$$
 (15)

From equations (14) and (15):

$$-\frac{7.38}{2.8}(z-17.8)+75.46 = (z-17.8)^2$$

$$(z-17.8) = 7.47$$

And

$$z = 25.27 = 25.3 \pm 0.1$$
 cm

$$\frac{M}{m} = 2.68 = 2.7$$

Error Estimation

Find error for g:

From (10),
$$g = \frac{4\pi^2}{\alpha}$$
$$\Delta g = \frac{\Delta \alpha}{\alpha} g = 16.3 \text{ cm/s}^2 \approx 20 \text{ cm/s}^2$$

i) Find error for z:

First, find error for
$$r = \frac{\beta}{\alpha} = \frac{3.10}{0.04108} = 75.46 \text{ cm}^2$$
.

$$\Delta r = (\frac{\Delta \alpha}{\alpha} + \frac{\Delta \beta}{\beta})r = 2.5 \text{ cm}^2$$

Since error from r contributes most $\left(\frac{\Delta r}{r} \sim 0.03 \text{ while } \frac{\Delta L}{L}, \frac{\Delta x_{cm}}{x_{cm}} \sim 0.005\right)$, we estimate error propagation from r only to simplify the analysis by substituting the min and max values into equation (4).

Now, we use $r_{\text{max}} = r + \Delta r = 75.46 + 2.5 = 77.96$. The corresponding quadratic equation is

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX

Experimental Competition: 14 July 2011

Question 2 Page 7 of 9

$$(z-17.8)^2 + 1.743(z-17.8) - 77.96 = 0$$
 The corresponding solution is $(z-17.8)_{\text{max}} = 7.55$ cm
If we use $r_{\text{min}} = r - \Delta r = 75.46 - 2.5 = 72.96$, the corresponding quadratic equation is

 $(z-17.8)^2 + 3.529(z-17.8) - 72.96 = 0$ The corresponding solution is $(z-17.8)_{min} = 6.96$ cm

So
$$\Delta(z-17.8) = \frac{7.55-6.96}{2} = 0.3 \text{ cm}$$

Note that $\frac{\Delta(z-17.8)}{z-17.8} \sim 0.04$. So, we still ignore the error propagation due to ΔL , Δx_{cm}

The error Δz can be estimated from $\Delta z \approx \Delta(z-17.8) = 0.3$ cm

ii) Find error for $\frac{M}{m}$:

We know that
$$\frac{M}{m} = \frac{z - 17.8}{2.8}$$

$$\Delta \left(\frac{M}{m}\right) = \frac{\Delta(z - 17.8)}{2.8} = 0.11$$

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX

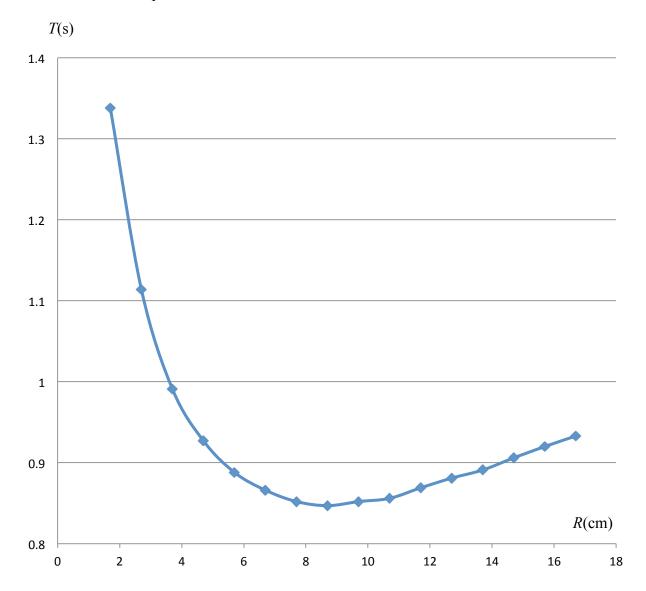
Experimental Competition:

14 July 2011

Question 2 Page 8 of 9

Method (b)

Calculation from *T-R* plot:



Using the minimum position: $T = T_{\min}$ at $I_{CM} = (M+m)R_{\min}^2$ and $g = \frac{8\pi^2 R_{\min}}{T_{\min}^2}$

From graph: $R_{\rm min} = 8.9 \pm 0.2$ cm and $T_{\rm min} = 0.846 \pm 0.005$ s

$$\therefore g = 982 \pm 40 \text{ cm/s}^2$$

$$I_{CM} = (M+m)(8.9)^2 = (79.21)(M+m)$$
(16)

Q2_EXPERIMENT_SOLUTION_FINAL.DOCX Experimental Competition: 14 July 2011

Experimental Competition: 14 July 2011

Question 2 Page 9 of 9

From equations (14), (15), (16):

$$(79.21)(M+m) = 75.0M + 7.84M + m(z-17.8)^{2}$$

$$-3.63M + 79.21m = m(z-17.8)^{2}$$

$$(x-17.8)^{2} + \frac{3.63}{2.8}(x-17.8) - 79.21 = 0$$

$$(z-17.8) = 8.28$$

$$z = 26.08 = 26.1 \pm 0.7 \text{ cm}$$

$$\frac{M}{m} = 2.95 = 3.0 \pm 0.3$$

And

Error estimation

i) Find error for g:

Using the minimum position: $g = \frac{8\pi^2 R_{\min}}{T_{\min}^2}$, we have

$$\Delta g = \left(\frac{\Delta R_{\min}}{R_{\min}} + 2\frac{\Delta T_{\min}}{T_{\min}}\right)g = 34 \approx 30 \text{ cm/s}^2$$

ii) Find error for z:

First, find error for $r = R_{\min}^2 = 79.21 \text{ cm}^2$.

$$\Delta r = 2R_{\min} \Delta R_{\min} = 3.56 \text{ cm}^2$$

This r is equivalent to r in part 1. So, one can follow the same error analysis.

As a result, we have

$$z = 26.08 \approx 26.1 \text{ cm}$$

 $\Delta z = 0.8 \text{ cm}$

i) Find error for M/m:

Following the same analysis as in part I, we found that

$$M/m = 2.96$$
; $\Delta(M/m) = 0.15$

NOTE: This minimum curve method is not as accurate as the usual straight line graph.