FERENF

www.xuebazhushou.com

RaEE | 1™ME | BiRiiE

=T WHIFSI R SEAPP

| -



Methods of Mathematical Physics

Solution of Exercise Problems

Yan Zeng
March 9, 2008



Contents
1 Complex Numbers and Complex Functions

2 Analytic Functions

2.1 Exercisesinthe text . . . . . . . . .. ... o
2.2  Exercises at the end of chapter . . . . ... ... ... ... ........

3 Complex Integration

4 Infinite Series

4.1 Exercisesin thetext . . . . . . . . .. ... L
4.2 Exercises at the end of chapter . . . . .. ... ... ... .........

5 Local Expansion of Analytic Functions

5.1 Exercisesinthetext . . . . . . .. .. ... . o L.
5.2 Exercises at the end of chapter . . . . ... .. ... ... .. .. ...

6 Power Series Solution of Second Order Linear ODE

6.1 Exercisesinthetext . . . . . . .. .. ... . o .
6.2 FExercises at the end of chapter . . . . .. ... ... ... .. .......

7 Residue Theorem and Its Applications

7.1 Exercisesinthetext . . . . .. ... . ... oo .
7.2 Exercises at the end of chapter . . . . . ... ... ... .. ...

8 I Function

9 Laplace Transform

9.1 Exerciseinthetext. . . . . . . . . . . .. . .. . ... ..
9.2 Exercise at the end of chapter . . . . . . .. ... ... L.

10 § Function
11 Complex Functions in Mathematica
12 Equations of Mathematical Physics

13 General Solutions of Linear PDE

13.1 Exerciseinthe text . . . . . . . . . ...
13.2 Exercise at the end of chapter . . . . . . ... .. ... ... ... ..

14 Separation of Variables

14.1 Exerciseinthe text . . . . . . . . . . ..o
14.2 Exercise at the end of chapter . . . . . . . ... ... ... .. .......

15 Orthogonal Curvilinear Coordinates

15.1 Exerciseinthe text . . . . . . . . . . .. oL
15.2 Exercise at the end of chapter . . . . . . . .. ... ... ... ... ..

16 Spherical Functions

16.1 Exerciseinthetext . . . . . . . . .. ... L
16.2 Exercise at the end of chapter . . . . . . . ... .. ... ... ... ..

ot

10

13
13
14

18
18
19

24
24
24

33
33
38

52

55
95
o6

62

68

68

69
69
69

72
72
76

83
83
84



17 Cylinder Functions
17.1 Exercise in the text . . . . . . . . . ..
17.2 Exercise at the end of chapter . . . . . . . .. .. ... .. 0oL

18 Summary of Separation of Variables
18.1 Exercise in the text . . . . . . . . . ..
18.2 Exercise at the end of chapter . . . . . . ... .. ... ... 0.

19 Applications of Integral Transforms
20 Method of Green’s Function

21 Introduction to Calculus of Variation
21.1 Exercise inthe text . . . . . . . . . . L
21.2 The Rayleigh—Ritz method and its application to the Sturm—Liouville problem
21.3 Solutions of the exercise problems from Gelfand and Fomin [4], Chapter 8 . . .
21.4 Exercise at the end of chapter . . . . . . . . .. ... oL

22 Overview of Equations of Mathematical Physics
22.1 Summary on the classification of second order linear PDE . . . . . ... .. ..
22.2 Exercise at the end of chapter . . . . . . . . .. ... 0oL

A The Black-Scholes partial differential equation
A.1 Derivation of the Black-Scholes PDE and its boundary conditions . . . . . . ..
A.2 Simplification of the Black-Scholes PDE via change-of-variable . . . . ... ..
A.3 Solution of the simplified PDE and the Black-Scholes call option pricing formula

87
87
88

88
88
88

90

94

94
94
96
97
100

102
102
103



This is a solution manual of selected exercise problems from Methods of Mathematical Physics, 2nd
Edition (in Chinese), by Wu Chong-Shi (Peking University Press, Beijing, 2003).



1 Complex Numbers and Complex Functions

Exercises are omitted since they are straightforward.

2 Analytic Functions

2.1 Exercises in the text

2.1.
Proof.

Of . [(Ou . Ov v Ou Of Ou . 0Ov

t— =1\ —ti1— | =—FF+1t—, 7= — +1—.

or or  Ox dr Ox’ dy Oy oy
So i% = % if and only if Cauchy-Riemann equations hold. O
2.2.
Proof. Since z = (2 + z*) and y = —£(z — 2*), we have gz‘” =1 and aazy* = <. So

0F _ (10w, 10w\, (100 idv\ 1 (0w 00\ i (0w, v
0z \20x 20y 20z  20y) 2\0x Oy 2\0y 0z)°

Therefore ng* = 0 if and only if Cauchy-Riemann equations hold. O
2.3.
Proof. Apply Cauchy-Riemann equations. O
2.4.
Proof. Omitted since the proofs are based on the definition and are similar to those for functions of real
variables. O
2.5.
Proof. Let z; and zo be any two distinct points in the complex plane. Define f(z) = exp (z%w)
Then f(z) is analytic with f(z1) = f(z2) = —1. But f'(2) = % exp (z%w) # 0, Vz € C. So the
mean value theorem does not apply to f(z). (This example is from [8].) O

2.6.

Proof. Suppose f(z) = u(x,y) + iv(z,y). Then by Cauchy-Riemann equations, f'(z) = 0 in G implies all
the partial derivatives of v and v with respect to z and y equal to 0 in G. Using the results for functions of

real variables, we conclude v and v are constants in G. So f is a constant in G. O
2.7.
Proof. This is a direct corollary of the Cauchy-Riemann equations. O
2.8.



Proof. From the condition au(z,y) + bv(z,y) = ¢, we have
a gy m +b3L =0
aay bd” =0.

Bov_( b\ ou( by _ou( by _ou( b\ _on_ o
29z \a)ox\ a) 0x\"a) oy\ o) o9y oz

ie. (Z—z + 1) g = 0, which implies —Z = 0. Similarly

Yov (b Ou ( b\ _Quf b\ _ Ov( b\ _ _Odu_ v
a2dy \ a)Oy\ a) Oy\ a) Oz \ a) Oz Oy

ie. ( + 1) v — (), which implies 8—; = 0. Combined, we conclude v is a constant in G. By Cauchy-

Riemann equatlons, we can also conclude w is a constant in G. So f(z) is a constant in G.

If a, b, and ¢ are non-zero complex constants, the conclusion still holds. Indeed, we have shown for the
real case that when Z—z +1 # 0, f(2) is a constant in G. Now suppose Z—z 4+ 1 = 0, we have two cases:
b = ia and b = —ia. In the first case, we have af(z) = au(z,y) + iav(z,y) = au(z,y) + bv(x,y) = c. So
f(2) = c¢/a is a constant. In the second case, we have af*(z) = au(z,y) —iav(z,y) = au(z,y) + bv(x,y) = c.
So f(z) = (¢/a)* is a constant. O

2.9.

Proof. We write z in its polar form: z = re? = r(cosf + isinf). Then e* = e"°*%e!*"¢ S as z tends to
oo with fixed argument, the argument of e* remains the same and the modulus of e* may tend to oo, or 0,
or remain the same, depending on the sign of cos 6.

Denote by 6 the principle argument of a, then z, = log |a| + (6 + 27n)i satisfies the requirement. O

2.10.

Proof. All the equalities can be proved via the equalities for trigonometric functions and the relation between
hyperbolic functions and trigonometric functions. We only prove the the two inequality.
First, we observe

1 1
[sinhy| = 5|ey —e Y| = 5[6211 + e~ _2]1/2 <

1
= 5[623’ +e W42 —4cos?x)/? <

| =
.
%)
+
|
Do
<
_|_
A9
-
~
()
|
o
o
w0
=
<

Similarly, we have
: Lo L o —2 12 1 o 2 /2 _
|sinhy| = §|e y—ey|:§[ey+e v —2] Si[ Yt e? 4 4cos’x —2]Y% = |cos(z + iy)|

1
= 5[629 +e 2 42 —4sin?2]'/? <

2.11.

Proof. We first assume |f(z)| is a constant in G. If this constant is 0, we have nothing to prove. So without
loss of generality, we assume |f(z)| is a non-zero constant in G. Suppose f(z) = u(x,y) + iv(x,y), then

S lF (@)1 = §;1f(2)]P = 0 gives

Ou(x, ov(x,
{2u(x,y) 9ury) | 9y(x,y) 20lu) —

2u(w, y) 25 4 9y () 258 = 0, W(x,y) € G.



Using Cauchy-Riemann equations, we have

ov ov _
{“ay +og, 0

ov v
Uy — Uag = 0.
Since zg’g; —Uii(x Z)J) |f(2)]? # 0 in G, solving the above linear equations gives Lg;’y) = 6”22’”) 0

in G. That is, v(z,y) is a constant in G. Cauchy-Riemann equations imply u(z,y) is a constant in G as
well. So f(z) is a constant in G.

We then assume § = 0(z) := arg f(z) is a constant in G. Write f in polar coordinate: f(z) = r(x,y)e
Then Cauchy Riemann equations become

6

Dr(z,y)cosf = C%r(a: y)sind

8%7“(3:, y)cos = —ZLr(z,y)sind.
Ifsm9—0WehaveCOSQ;éOandar—ar—O IfcosQ—OwehavesmH;éOand 5.7 = 7‘:0
If sinf # 0 and cosf # 0, we have 3 r = rtanﬁ = tan 6, which 1mpheb 5.7 = 0. Consequently,
ayr = 0. In either of the three cases, we always have 8 r= 3 r=0inG. Sorisa constant in G and f(z)
is a constant in G by the result of first half. O
2.12.

Proof. d¢ = (% S da + dy, dn = Zd:r + %Zdy. So by Cauchy-Riemann equations, we have

d R, o\’ e\ ?
dedn = a—ga—”d dy gja—dedy: (8Z> dwdy + (aj) drdy = |f'(2)2dady.

2.2 Exercises at the end of chapter

1.
Proof. The basic method is to verify that Ref and Imf are differentiable as functions of real variables, and
that they satisfy Cauchy-Riemann equations. O
2.
. x =rcosf
Proof. Since . , we have
y =rsinf

9 cos sin 6 %=
[23;] = {rsinf) rcos@] [%T] A1) [Z&?ﬂ

It’s easy to see A=1(6,r) =1 {: Z?ﬁg —C(s);ngﬂ

4[5 I8

Therefore, under the polar coordinate, the Cauchy-Riemann equations become

[{]-senfg]e-son[S i [fe-sen s aenff]e-[5 ]

} . Writing Cauchy-Riemann equations in matrix form, we get

3



3.

Proof. Fix z = re’¥, then

u(r + Ar,0) +iv(r + Ar,0) — [u(r,0) +iv(r,0)]  Ou _;5  Ov _;9 T [Bu ,81}]

/ A _vu ov N B vv
f(z)_Alirgo Ar - et o€ +281}e z 8r+18r

By the result of previous problem, we have
rou, o0] _1fov ou
zlor Tor] T 2 o0 o0

4. We use the following result from the theory of ordinary differential equations (see, for example, Ding and
Li [2], Chapter 2, Theorem 1).

O

Theorem 1. Suppose function P(x,y) and Q(x,y) are continuous on U = («a, 8) X (,9), and they have
continuous partial derivatives %P and %Q. Then the 1-form w = P(z,y)dx + Q(z,y)dy is exact if and

only if B%P = a%Q on U. Moreover, the 0-form whose differential is w can be represented as

z Y
| Pewie+ [ Quman+c.
o Yo
where C is a constant.
(1)

Proof. P(z,y) = 81;((;;7;;) = —aug;’y) =2y, Q(z,y) = %‘Zw = w =2z+1. So

x Y
oay) = [ PEnaE+ [ QOmdn+C=2ey+y+C,
0 0
where C' € R is a constant, and

f(2) =u(z,y) +iv(z,y) = (2 — > +2) +i2ey + y + C) = (z + iy)* + (x + iy) +iC = 22 + z +iC.

O
(2)
Proof. P(z,y) = &Jéfp’y) = _8ug;,y) = (I22j:52)2; Qz,y) = av((;;’y) = 8“53;79) — (;422;;;)2. So from some
constant C € R,
v 2y Yot -1
v(z,y) = / 7d§+/ —————=dn+C
1 (& +y2)? o (L+n?)?
2
v du Y 1 2
= — - dn+C
o, et L+n2 <1+n2>2} !
- 1 N 1 9 N . 2/arctany dtan 9 +C
= - arctany — —_—
Ty 1t Y 0 (1 + tan?6)2
r 1 1 7 arctany
= - t - 20 +1)d6 + C
y_ x2+y2+1+y2_+arcany /0 (cos20 + 1)df +
[ 1 1 ] 1 .
=y B + vl ism(Zarctany) +C
T 1 N 1 ] tan(arctany)
- | 22+y?  1+4+9y?] 1+ tan?(arctany)
Y
= ———+4C.
z? +y? *
Therefore f(z) = u(x,y) + w(z,y) = % +iC=1+icC. O



3)

Proof. P(z,y) = av(ga;,y) = —M(az’y) = —6(eyaz°sm) = —eYcosz, Qx,y) = %Iy’y) = % = —eYsinz. So

v(z,y) = fogc P&, y)dg + foy Q(0,n)dn = —eYsinz + C where C' € R is a constant. So f(z) = eYcosx —

ieYsinz +iC = eV~ 4+ iC = e~ % +iC. O
(4)

Proof. P(x,y) = 3”((99;’3’) = —méz’y) = —coswsinhy, Q(z,y) = a”gfl’y) = a"g;’y) = —sinxzcoshy. So

v(z,y) = — fom cosEsinhydf + C = —sinzsinhy + C, where C' € R is a constant. So f(z) = cosx coshy —

isinx sinhy + iC' = cos x cos(iy) — sin x sin(iy) + ¢C = cos(x + iy) + iC = cos z + iC. O

5. (1)

Proof. f’(z):%qLi%:g—;fig—Z:lfi. O

(2)

Proof. f'(z) = %Z - ig—z = cosx coshy — isinz sinh y = cos x cos(iy) — sinsin(iy) = cos(x + iy) = cosz. O

6.

Proof. We note 9% + 9% = 9t — 90 — (22 4 doy + ¢?) + (x — y)(2z + 4y) and J¢ — §u = Ju _ Bv

— (2% +4zy + y?) + (z — y)(4z + 2y). Solving these two equations for % and ?TZ’ we get

Then it’s easy to see u(x,y) = 322y —y> + C for some constant C' € R and consequently, v = u— (x —y)(2? +
dzy + y?) = —2® + 3xy? + C. Therefore

f(z) = B2’y —y* + C) +i(—2® + 32y* + C) = (iz —y)°* + C(1 +1) = —iz> + C(1 +4).

7. (1)

iz

Proof. We have 612_2;7‘7 = %, which is equivalent to (e**)? — #eiz — 1 = 0. Solving this quadratic
equation gives us

—1+3i —1+34)2
oir — A 4 (1430 £ B 6 (<1430 (i 3)

2 4 4

; . In 2 3 . . ; In2 ™\ ;
So e =i—1=¢% tEmHimi op ¢tz = Bl = =5+ 5)i € 7. Therefore z = 37+ 2n7 — £In2 or
Tt2nm+35In2, neZ. O

(2)

Proof. cosz = 4 is equivalent to (€%)2 — 8¢* + 1 = 0. So €* = 4 4+ /15 = ¢*(“+VI5)  Therefore

z=2nm+iln(4 +V15) (n € Z). O
(3)
Proof. tanz =1 gives :iz;zz,iz = —zzz;;} = i. So the equation becomes e?** — 1 = —e?* — 1, which has no
2
solution. O

(4)



Proof. The equation can be written as (2coshz — 1)(coshz — 1) = 0. So coshz = 1 or 3. Consider the

equation coshz = % = a. We reduce it to the quadratic equation of e*: e2?* — 2ae* +1 = 0. So
e*=a++Va?—1. If a =1, we get * = 1, which implies z = 2n7i (n € Z). If a = 3, we get €* =  + ?i,
which implies z = (2n & $)7i (n € Z). O
15.

Proof. This is Exercise 2.11. O

3 Complex Integration

1. (1)

Proof. (i) [27' Rezdz = [? ade + [[ xdy =2+ 2i. (ii) [T Readz = [ 26(2dt + idt) = 2 + 1. O
(2)

Proof. (i) [o & =227 =2(e¥' — 1) =2(i - 1). (i) [o & =2Vzl7" =2(e7 3" —1) = -2(i + 1). O

2. (1)

Proof. By Cauchy integral formula, f‘ = 1 & =2mi-1=2mi. O
(2)

Proof. §., 15 = Ji" 1 =0. O
3)

Proof. f‘ - 1‘ 5= 2” Tefde 0. O
(4)

Proof. ﬁz\:l || = 0277 df = 2m. O

3. (1)

Proof. Denote —* sin Z= by f(z).
(i) f(2) is analytic on {z : |z| < 1} and continuous on {z : |z| = 1}. So by Cauchy integral theorem,

f‘z‘:% f(z)dz = 0.
(ii) f(2) has one singular point zgp = 1in {z : |z—1] < 1}. So by Cauchy integral formula, ﬁzfl\:l f(z)dz =

1 sin ¢ o sm4 V2
f‘z \|e1 72T e 47 = 2mi |lo=1 = 2.

(iii) f(z) has two s1ngular points £1 in {z : |z| = 3}. So by Cauchy integral theorem for multiply
connected region, §|2|:3 f(z)dz = f\z—l|:5 f(2)dz + ~(£|z+1|:5 f(2)dz, where § > 0 is sufficiently small so that

{]z—1] < §}U{]z+1| < ¢} C {|z| < 3}. By Cauchy integral formula, 3%2_1‘:5 f(z)dz = 2mbn 4 am1 = ‘{m
and §Iz+1|:5 f(2)dz = 2msm 4 |.——1 = %2mi. Combined, we conclude §|Z|:3 f(2)dz = \fm.
(iv) v2mi. The calculatlon is similar to that of (iii). O

(2)

10



Proof. Denote —=e'* by f(z).

2241
(i) f(2) has a singular point zop = 4 in {|z —i| < 1}. So by Cauchy integral formula, f\z—ﬂ:l f(z)dz =
pr K

(it) f(#) has two singular points £7 in {|z| < 2}. So by Cauchy integral theorem for multiply connected
region and Cauchy integral formula, for § > 0 sufficiently small,

12 iz
e

e
dz = d dz = 2m 2=—i+ ——|z=i| = —27sinh 1.
j|§2|—2 f(z)dz ~7|§z+i|—6 f(z)dz+ fz—ﬂ—é f(z)dz = 2mi . —il + P z‘ 7 sin

(iii) —27sinh 1. The calculation is similar to that of (iii).

(iv) To have a closed curve, § must take all the values between 0 and 47 (see figure). This closed curve
forms two contours, each of which contains the two singular points £i of f(z). So by a calculation similar
to that of (ii) and (iii), f{zzrew:T:SiSmZ o) f(z)dz=2-(—2nsinh1) = —47sinh 1.

Figure 1: r =3 —sin® &, 6 € [0, 47]

4. (1)

cos z
z|=2 =z

Proof. By Cauchy integral formula, f‘

(2)

Proof. iz—;} has two singular points i in {|z| < 2}. So by Cauchy integral theorem for multiply connected

region and Cauchy integral formula, for § > 0 sufficiently small,

22 -1 1 22-1 1 22-1 22 -1 22 -1
—d dz + dz =2 | .= | 0
= 2 z = 2mi o —|z=—i| = 0.

l2)=2 22+ 1 lo—i|=s 2 =1 2+ |otil=s 2 T1 2 —1 z41 z—1

O

dz = 2mi cos z| =9 = 2mi. O

11



(3)
Proof. By Cauchy integral formula, f‘

(4)

Proof. coshz = 0 if and only if z = (§ + n7)i, n € Z. So {|z| < 2} contains two singular points £7i. By
Cauchy integral theorem for multiply connected region, for § > 0 sufficiently small, we have

e? e? e®
% dz = ?{ dz +j{ dz
|2|=2 COosh z e Ti|=5 cosh z et Ti|=5 cosh z
ez-i—%i ez—%i
= ——dz +% ——dz
j{zz(g cosh(z + §1) |2|=s cosh(z — §1)
z
= 2]{ .e dz
|2|=s sinh 2
z
= 4?{ — ¢ 4
|2l=5 €% — €77

1
= 4 ——dz.
fz_é 622_1 <

Using power series expansion of €%, we can see lim._o 2> = 1 uniformly.! So by Lemma 3.1,

sin e”
z|=2

dz = 2misin(e?)| =0 = 27misin 1. O

1 1
lim ———dz =2mi - o = mi.
6—0 |z|=6 e’z —1 2

So ‘fl2|=2 T)‘Z;Zdz = lim54’04x¢‘|z|=5 ﬁdzj = 473, O

5. (1)

Proof. By Cauchy integral formula,

i
% B2 e = omi - (sin z)’ |.—o = 2mi.
|

z|=2 22
O
(2)
Proof. By Cauchy integral formula,
z|e® 1 e?
f | |2 dz =2 2mi— —dz = 4ri(e*)'| .= = 4mi.
|z]=2 z 21 |z|=2 z
O
3)
Proof. By Cauchy integral formula,
sin z 2mi 3! sin z e 7r
—dz = — — T2z = —(sin2)®|,—g = — =i
sz|=2 24 3V 2mi Jme 24 3 (sin 2)*]z=0 3
O
S0 [221F71
1We note | 22— ’ = 1(2 T — 1| < % — 0 uniformly when z — 0.
402, zk! 1_ZT

12



(4)

Proof. By Cauchy integral formula,

f dz P 1 /| _o
L 22+ 16) U \Zy1e) 0T

O
6. (1)
Proof. By Cauchy integral formula,
e* 2w 2! e?
Zdy =200 2 —dz =i (e5)?],_o = Ti.
j|{|—1 E T 7T e b (&) e = mi
O

(2)

Proof. F(z) is univalent if and only if any closed curve C, §,e* (£ + %)dz = 0. When the interio of C

z
does not contain 0, this is true by Cauchy integral theorem. So we only need to consider the case where the

interior of C' contains 0. Without loss of generality, assume C' = {|z| = 1}. Then by Cauchy integral formula

1 271
/cez (z * :3> dz = Sr1(* + )| P g =a+ 2

So when a = —2, F(z) is univalent. O

4 Infinite Series

4.1 Exercises in the text

4.1.

Proof. (1) a,, = ﬁin (2) agn = n%ﬂ, ont1 = # (3) agn = %, ont1 = # (4) a, = 0 if n is even,
a, =1ifnisodd; b, =1— a,. O
4.2. (1)

Proof. If x = 0, the series is clearly convergent. If x # 0, then by noting the series is a geometric series, we
can calculate it converges to 1. To see the convergence is not uniform, note Vn > 1

x
1— E = 11— . = .
— (L+a?)* 1+22 1- (1+22)"

1
n 2 ‘ 2 1—m7 1

_1
142

No matter how big n is, we can always find an = > 0 (dependent on n), so that m > % This shows the
convergence is not uniform. O

(2)

Proof. We note
(=" D] ! <!
nd+x2 n+l+22 (+l+z)(n+22) = (n+1)n’

%)
n=N n+z2 +x2 n=1 n+x2 ~

00. O

So > ﬂ‘ <> N m, which implies 2% | 17 is uniformly convergent. But clearly, 3

13



4.3. (1)
Proof. min{R;, R2}. From the special case a,, = 0 or b,, = 0, we can see this radius cannot be improved. [
(2)

Proof. By Cauchy’s criterion, Ry = lim,_, |a |1/n and Ry = lim,_, |b |1/n. Since for any positive
sequence (T, )n>1 and (yn)nZh lim, . %n hm,Hoo Yn < lim, | (Tnyn), the radius of convergence R for
Zzozl anby, 2™ satisfies

1/n 1 1/n 1 1/n
R = lim > lim |— — =R Rs.
n—oo | Anbn n—oo | an by,
The special case where a,, = b,, = 1 shows the result R > R Rs cannot be improved. O

3)

1/n
Proof. When lim,,_, ’%‘ exists, the radius of convergence is R% Otherwise, the best result we can

obtain is R = lim,, , _ |a,|'/" = ——2—— . O
lim,, |3t
(4)
Proof.
l/n 1/’I’L 1
lim | > lim |— lim |ay| n > R, e
n— oo a" n—oo | On n—oo Tim ‘ ‘ /n
" My oo |7
1/n R
When lim,,_, ‘i‘ exists, the right side of the above inequality becomes 2. O

4.2 Exercises at the end of chapter
1. (1)
Proof. .°°

=3, ﬁ >3, % = 00. So the series is not absolutely convergent. Meanwhile,

o0

iﬁl - kzzo_ [(111(41:+2) - 1n(4l<:1+4)) ” (ln(4k1+3) - ln(4k1+ 5)” '

By Leibnitz’s criterion for the convergence of alternating series,

oo oo

> - |nw =3 {am

pre In(4k +2) In 4k +4) — In(2
is convergent. Similarly,

z% Ln4k+3) In 4k+5] mz::lzln2m+1
is convergent. Therefore >, o, is convergent. O
(2)

Proof. By argument similar to that of (1), > 7, % is convergent, but not absolutely convergent. O

2.

14



Proof. Suppose |z| < 1. Then (1*2"2)7(1#”“) ~

—1

|z] < 1. To find the sum function in this case, note for |z| <1,

Now suppose |z| > 1. Then T (=7 T)

nfl

(I—2m)(1 -2t

n—1

LoSo Y0 s ame

Zn—l

[e%e] . 1
B ZZ 1l—z(

n=1

1 z
1—zn 1 — gntl

1 o0
1—=2 (;_:
-
(1-2)%

1

T (i) (1—z— (D) 7 Zn+2

So S>>

is absolutely convergent on

n 1

n=1 (T=z7)(I=z7¥1) 18

absolutely convergent on |z| > 1. To find the sum function in this case, note for |z| > 1,

3. (1)

P 1

(1—27)(1—2ntt

oo

n=1
[e%S)

1
Z 2" 2(1—2z7m)(1 — 2~

(1))

n=1

Y o
2t2 2 1 \1—2z"

1 (& e
z—1 Zlfz*”

n=1

x  —(n+2)

“2 e

1
1 — z—(nt+1)

Proof. Since for |z| > 1, |2|™ > |z| and > 0o, |2| = oo, the series is divergent on |z| > 1. Since for |2| < 1,

|2|™ < |2]™ and Y07 | |2|™ < oo, the series is convergent on |z| < 1.

(2)

Proof. The series converges over

3)

Proof. |2% +2z+2| < 1.

(4)

Proof. Suppose z = 2 + yi. Then

eiz _ efiz

24

sinz =

—(e7vTi

Asz— 0, e’sinz ~ z and 5;e"(e7¥ —e¥) ~

if and only if >~ >°

is convergent. Since Z

12" s convergent and > 7

120sin g7 = P

3 (—2y) = yi. SOZ

o o : e SN0 on
123" sin 5% s convergent if and only if > ", 2" %

27 [Feim (e 3

O
1%2‘ < 1. Solving the inequality 11;121 < 1givesz > —1. O
O
' L e ; : 1,
V) = g (e — ) F (e —eT)] = et (e — e¥) ¢V sin.
]

— e37)] is convergent

— Y Y . .
12" [£e37 (e737 — e37) + e37 sin |, and since for arbitrary

r,yeR, Y00 (g) yi and > ( ) x both converge, we conclude Vz € C, ", 2" sin 5% is convergent.

15
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Proof. At z =1, the sum is equal to Y (%ﬂ - 2n2ﬁ) =3 (ﬁ — zfﬁ) =2(-1+3-3+1+

- 4+1)=2(1-1n2). For || <1, 3%, 7:11 =30 Jo whdw = [5(3 0w )dw = [ 1% Similarly,
9,2n+3 d z g z g nt1 9,2n+3
Yoo T3 = > om0 fo 2w dw = fo Wity = -2+ [§ 2% — Jo Thw: S0 Yoo (n+1 ~ 5n73 ) =

2z —In(1 + 2) for |z| < 1. In summary,

I, [ pntl 9203 2z —In(1+2), |z|<1
S<z>Z( B >{ (1+2), |2

= n+1 2n+43 2—2In2, z=1.
O
5.
Proof.
—dw Pan
In(1—2) = dw = — .
-2 = [T [ e = -3 2
So for any r € (—1,1), by letting z = re??, we get
) [e%s} (_reie)n o0 (_1)n+1 - o) (_1 n+1 ‘ .
In(1 + re?) = — - = — e = r" cosnf + ir"™ sin nf).
R P 2! !

Suppose In(1 4 re??) = 2 + yi. Then e®cosy = 1+ rcos@ and e®siny = rsinf. Solving for z and y gives

T = % In(1 + 2rcos@ + r?), y = arctan 1;;1“029. Matching the real part and imaginary part in the equality
1 inf = (—1)n+?
B In(1 4 27 cos @ + r?) + i arctan % = ngl ( ZL (r" cosnf + ir™ sinnf)

gives the desired equalities. O

6. (1)
Proof. In the first equality of Problem 5, replace 6 with 6 + 7 and let » — 1, we get

cos20  cos 30

0
cos—|—2+3

L= —%ln(Q —2cosf) = —ln(QSing).

To justify the process of taking limit, according to Abel’s second theorem, it suffices to show the series

> % is convergent. Since (%)nZl is monotone decreasing to 0, by Dirichlet’s criterion, it suffices to

show >"}'_, coskf is bounded for any n. This can be seen by noting % = ZZ:O etk After writing

both sides in terms of real and imaginary parts, we have by comparison

En: coskf| =
k=1

Similarly, in the second equality of Problem 5, replace 6 with 6 + 7 and let r — 1, we get

cos(n+2)0 —cos(n+1)8 1 < 1 1

2(1 — cosb) 2 *l—cosﬁ—ki

i sin nf@ . arctanﬂ = arctanCOtQ = 1(7‘( - 9)
n_ 1—cosf 2 2 .

n=1

16



Proof. Let 7 — 1 in the first equality of Problem 5, we have Ezozl(—l)"“‘l% = 3In(2+ 2cos6). In (i),
we have shown 307 | €18 — _In(2sin £). Add up these two equalities and divide both sides by 2, we get

n
(note 1+ cosf = 2 cos? £)

COS‘9+cos39+cos5t9+cos70+ —llncotg
3 5 7 2 2

. . . . o . 6 6
Similar argument gives (note sin @ = 2sin g cos 3)

sin30 sinbf sin76

in 6
sméb + 3 + 5 + 7
1 sin 6 1
= = tan ——— 4+ (1 — 0
Q(arc an1+cose+2(ﬂ ))
1 0 1
= 5 [arctan (tan 2) + 5(71' — 0)]
- T
= T
O
(3)
Proof. Integrating from 7 to ¢ on both sides of
Sin9+sin39+sin59+sin79+ T
3 5 7 4
we get
10+00539+cos56+cos70 _z(z 9>
OSUT T 52 7 T\ )
Replace ¢ with 6 + 7, we get
) sin30 sinbf  sin 76 i
—sind + TR + S Z(—@).
Therefore
Sine_sin39+sin59_sin79+ _ Ty
32 52 72 4
O
(4)
Proof. From part (2), we know
COSH+COS36+COS50+COS70+ 711 cotg
3 5 7 T Ny
Form part (3), we obtain by differentiation
COS@_C0539+COS59_COS79+ o
3 5 7 4
O
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Proof. (1) R =lim,, __ |n"|"/™ = +c0.

(2) R=o0

: n!/n™ . n
(3) R =iy, o0 ooy = limp oo g (14 1) (n+1) =e.
(4) R=o0

nn 2

(5) R = lim,, oo (n=m™)V/" = 1imn_,oo(eln”‘1“"71)1/" = lim,, oo e
(6) R=

: Inn"/n! . In
(8) R =limy 0 [(1 — %)—n|1/n = limy, oo (1 — %)—1 -1 -

5 Local Expansion of Analytic Functions

5.1 Exercises in the text

5.1.

Proof. If g(z) = 0, the problem is ill-posed; if f(z) = 0, there is nothing to prove. So without loss of
generality, we can assume zq is a zero of f(z) of order n and a zero of g(z) of order m. Then f(z) can
be written as f(z) = (2 — 20)"¢(z) where ¢(z) is analytic at zp and is non-zero in a neighborhood of z.
Similarly, g(z) can be written as g(z) = (z — 20)™¥(z) where ¥(z) is analytic at zy and is non-zero in a
neighborhood of zy3. Then we have

o [l e
92) =19 90 ifn=m
L (z) ifn<m
(z=z0)™ " ¢P(2) ’
which implies
0 ifn>m
1 1) _ ] s ifn=m
z—20 g(z) 17/}(20)
00 if n <m.

Similarly, we have

n(z=20)" " ¢(2)+(z—20)" "1 ¢ (2)

ma(z z—2z (z lf n>m
S _ a2l 100 + =20 06) el 0
/ _ m— _ Mg/ n(z)+(z—=z (z
g(z) - mlz=20)" (@) + (2 = 20)"9(2) n(2) +(2-20)0'(2) itn<m
M=z () 20T () 7
which implies
0 ifn>m
/
im f/(z) = zgo)) ifn=m
== ¢'(2) o
00 if n <m.
Therefore we must have ,
i £C) _ py 710
206 T )
O
5.2,
Proof. The solution is similar to that of problem 5.1 once we write f(z) and g(z) as (ﬁ(izzo))n and (zf(zz))"”

respectively.

18



5.3.

_ 1
and z, = G D O

Proof. z, = 0

1 _ _
ant)mi> “n = “n =

1 1
2(n+1)mwe? (2n+%)7ri’

5.4.

Proof. By considering the singularity of 0 for f(1/z), we can conclude the following results: if co is a
removable singularity of f(z), then f(z) has the form of > °7 %= in a neighborhood of co; if oo is a pole of

n=0 zn

f(2), then f(2) has the form of Y7 /%= + 3" | byz* for some positive integer m in a nelghborhood of oo

Zmn

and by, # 0; finally, if co is an essential singularity of f(z), then f(z) has the form of > 7 ;%2 +37° | b
where infinitely many by’s are non-zero.

5.9.

Proof. In formula (5.48), we already obtained

z 2 E, /z\"
— _n(z
sechi = E iy (2) ) 2l <

n=0

Replace § by sw with |w| < F. O

5.2 Exercises at the end of chapter

1. (1)

Proof. 1 —22=1—[(z—1)+ 12 = —2( — 1) — (= — 1)%. Radius of convergence R = cc. 0
(2)

1 n+k

Proof. sinz = (—1)"sin(z —nm) = (=1)" 322, (2k+1)'( nm)?Ftl =3 (2k+1), (z —nm)?k*+1. Radius of
convergence R = oo. O
(3)
Proof. Solve the equation 1+ z 4 22 to get two roots: z; = edmi = *1%‘/32 and zo = €3™ = 71%\/& Then
1 SO 1 1 1
142422  z21—290\2—21 2—29
=1 (1 1 1 1
 VBi\zs - Zil 251 — é
i1l e=/2z\" 1< (z )n
i 2 . s ,
_ v n (,—%(n+1)mi _ 77(7’7,4’1)71‘2)
= zle 3 e 3
A
9 & nefg(n+1)7ri — e3(nt)mi
% 3
B Zsin%(n+1)7r n
B — sin %ﬂ'
The radius of convergence R = 1. O

(4)
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Proof.

sin z > )k L2k (—1)k
et 5L S

n=1 L2k+1+m=n

The radius of convergence R = 1. O

(5)

Proof. 1t’s clear that 1 is a singularity. So the radius of convergence R = 1 and the function is analytlc

inside the unit disc D(0,1). Suppose eTF = = Yo, anz”.

> re, kagz"~1. Therefore

Differentiate both sides and we get (1_2)2 =

oo oo oo oo oo

Zakzk —eTF = (1—2z+ 2% Z kapzF"1 = Z(n + Dapy12™ —2 Z na,z" + Z(n —Dap_12".

k=0 k=1 n=0 n=1 n=2
So ag = a1, a1 = 2a2 — 2a1 and ap41 = 27?:11%1 - Z+}an 1 for n > 2. By recursion, we get ag = e, a1 = €,
ag = %e, ag = %e and ay = 726 So eT= :e(1+z—|— 322 4+ 13 23+ 72644-0( )) O
2. (1)

Proof. Since z = 0 is a singularity for Inz, the radius of convergence R = 1. Using the power series of
In(1 — 2), we have

lnzzln[i(l—i(z—i))]:lni—z[i(zi:f—Z (z—1)

(2)
Proof. The solution is similar to that of problme (1), only that Ini = —3. O
3)

Proof. We note arctan z is an od function, so its series expansion must have the form Y °  as,412
Differentiate both sides and we get 1+22 =3 o aant1(2n+ 1)z*". So

2n+1

=(1+ 22 Za2n+1 (2n+1 Zd2n+1 (2n+1) 2"—!—2(1271 1(2n —1)22
n=0 n=0 n=1
Therefore a; = 1 and agy,+1 = 2n+1a2n 1 for n > 1. This implies ag,+1 = (2n+1 Since we have used H_zg
which has +i as poles, the radius of convergence R = 1. O
(4)
Proof.
1 1 1
In tE o In(—1) +In (1+ > —1In (1 )
1—2 z z
= (2k+ )i L] 2
(2k + >m+n§jl[< ] =
= (2k+Dmi+ Z 2 = (),
2n+1
We used the assumption ﬁ < 1 in the above derivation, so the domain of convergence is |z| > 1. O
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3. (1)

0o 2nl
Proof. Let f(2) =>_,_¢ 5,77 Then
- 1 1/ 1 1
/ 2n — ———
f(z)—nz::Oz 1 22 2(1—2 1+z>
Therefore f(z) = £ In 1£2 with f(0) = 0. O
(2)
Proof. Inspired by definition of trigonometric functions via exponential function, we have
> Z2n 1 > L > (_1) on 1 ; .
S =3[ 5 T e e =
n=0 n=0 n=0
O
4. (1)
Proof. Assume m =3 . an(z—1)" Then by Theorem 5.4,
1 / 1 dz 1 / 1 dz
Qp = —— : = T i oo
Comi Jiy, 22z —1) (=) 2w J g, 22 (2 — 12
If n < —2, by Cauchy’s theorem, a,, = 0. If n = —1, by Cauchy’s integral formula, a, = %|,—; = 1. If
n > 0, by Cauchy’s integral formula
1
(=2)(=3) -+~ [=(n +2))z= " = (n+2)(-1)"*".
z=1

n+1
a, = ; d ( —2)
(n+1)! dzntl

z=1 - (n /M 1)'

= Zf}l

S0 sy = Lato(m +2)(= )"z = )" + (2 = )7

(2)
Proof.
1 11 1 &1\ &
S F oA G) S
22(z—1) =z 1-1 23 =\ 2 o
3)
Proof.
1 111
z—2 z—-1 201-%) =z21-1
oo ~

22-3242
X 7 0o 1 n
) Yo DI =

21



Proof.

1 1 1 1/ 1 1 >
— — == = on—1 _1),=n
—3:4+2 2-2 z2-1 z<1—§ 1—1,) ;( )2
O
()
Proof.
(z—=1)(z-2) 1 1
= (2°=-32+42) (- — —
(z=3)(z—14) 41-3) 2(1-2)
_ 2
= @esry |2yl () ]
n=0 n=0
3 = 2" e
- 1_522271 - Z gntl
n=0 n=-—1
O
(6)
Proof.
(z—1)(z2-2) 9 1 1
— s = —-3242) — —
(z=3)(z—4) (2 &) z—4 z-3
- () E0 S0
n=0 n=0
oo
P 1+Z(322n—1 _2.377,—1)2_
n=1
O
6. (1)
Proof. 2+a2 = 2%“ [Z_lai — Z+m} So +ai are poles of order 1. Since lim,_, o, 2+a2 =0, oo is a removable
singularity. 0
(2)
Proof.
—1 " n o0
cosaz 220:0 ((21'7,))' Z2 o Z (71)’”22”,2
2 2 - !
z z — (2n)!
So 0 is a pole of order 2 and oo is an essential singularity. O
®3)
Proof.
cosaz — cos bz > )"
—_ b2n 2n 2n b2n 2n—2.
N =Xy
So 0 is a removable singularity and oo is an essential singularity. O

(4)
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Proof.

1y
sinz 1 sinz—z D et (;nJr)mZQnH — )" on1
22 z 22 22 2n —|— 1)!
n:l

So 0 is a removable singularity and oo is an essential singularity. O

(5)
Proof.

\/g n=0 ’ n=0

So oo is an essential singularity. O

(6)
Proof.

vz vz 1
1 n N
bm‘[ om0 (gn—i-l)‘z \f > neo (2n+1)'z

So 0 is a removable singularity. Meanwhile, (nm)? (n € N) are poles of order 1 and oo is a non-isolated
singularity. O

(7)

Proof. If we stipulate In z|,—; # 0, then 1 is a pole of order 1. If we stipulate In z|,—; = 0, then by ’'Hospitale
rule for analytic functions (Exercise problem 5.1 and 5.2 in the text), we have

zZ— .
ey - L
So (2_11) Tl 11)2 P = L has 1 as a pole of order 2. oo is a removable singularity. O
(8)
Proof.

smh\f Ck 1
s Z i Zk%

So the function is an entire function with co an essential singularity. O

7.

Ccos z

Proof. z? has oo as a pole of order of 2. i has oo as a removable singularity. has co as an essential
singularity (see problem 6(2)). has co as a non-isolated singularity since n +5 (n 6 Z) are poles

COos z

2 . . 2
Zefl has oo as an essential singularity since lim,_, s, ejl does not exist: lim, .o .er % =0+# o0 =
2
: z°4+1 1 _
lim, oo 2eri 3. exp{—zz} has oo as a removable singularity since lim, . exp{—z—Q} =e) =1. Cosh\f

has —(nm+%)? as poles (n € Z), so it has co as a non-isolated singularity. The function /(1 —1) (1 —2) =

7W has 0 as a pole of order 1, so the function 1/(z — 1)(z — 2) has oo as a pole of order 1. O
8.

Proof. The series Y- (az)™ is convergent in Uy = {2 : |2| < ﬁ} The series 1 Zfzo(—l)"% is
convergent in Uy ={z:|1—qllz| <|1-2z2|}. On U3 = Uy NUs, both of the series represent the analytic

function . So the functions represented by these two series are analytic continuation of each other. [J

1—

9.
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Proof. Denote by f(z) the analytic function represented by the series in |z| < 1 and by g(z) the analytic
function represented by the series in |z| > 1. Since the roots of 2 =1 (n € N) are singularities of the series
and consist of a dense subset of 9D(0,1), f(z) and g(z) cannot be analytic continuation of each other. Of
course, we need to verify that the series indeed converges to analytic functions both in |z] < 1 and in |z| > 1.
When |z| < p < 1, we note

Y23 n

B 2"(z—1)

p p
; ’ (I—zrth)(1—2m)

S =)A= ) S T )

By Weierstrass criterion, the series is uniformly convergent to an analytic function on |z] < p. So f(z) is
well-defined in |z| < 1. When |z| > R > 1, we note

IN

1 1
1—zntl 1 —gn

1 1 1 1
’1—zn+1_1—zn TGy o) (S )
S S B S S
T R1- gy RU1- L

11 11

< 4+ — .
- n 1 n 1
Ri1-L Ri1-1L

By Weierstrass criterion, the series is uniformly convergent to an analytic function on |z| > R. So g(z) is
well-defined in |z| > 1. O

10.

Proof. Clearly the series is convergent in D(0,1) and is divergent at z = 1. So its radius of convergent
R =1. Then f(z) is analytic in D(0,1) and z = 1 is a singularity of f(z). We note f(z) =z + > o0, 2% =
Z+>00, 227 = o 22021(22)271—1 = z + f(2?). Therefore, we have

f(2)=z24+f(Z)=24+22+f) =2+22+ 22+ f(B)=---.

So the roots of equations 22 = 1, 2* =1, 28 = 1,---, 22" =1, ---, etc. are all singularities of f. These
roots form a dense subset of 9D(0,1), so f(z) can not be analytically continued to the outside of its circle
of convergence D(0,1). O

6 Power Series Solution of Second Order Linear ODE

6.1 Exercises in the text

6.1.

Proof. 1t suffices to note we have the following linear equations

{p(z)w (2) + a(2)wn (2) = —w} ()

1
p(2)wy(2) + q(2)we(z) = —wy(2).

Then we can apply results in linear algebra (i.e. Cramer’s rule). O

6.2 Exercises at the end of chapter
1. (1)

Proof. Let w(z) = cowy(z) + crwa(z). Then w'(z) = c¢g + c1€® and w'(z) = cie*. Then w(z) — zw'(z) =
c1e® —c1ze® = (1 — z)w”. So the differential equation satisfied by w(z) is

(z— Dw” — 2w +w =0.

24



(2)
Proof. Let w(z) = cowr(2) + ciwa(z). Then

So 22w’ = —cper + 2cie”F (*). Differentiating both sides and multiply both sides by 22, we get 223w’ +
2" = coe% +4cre” % (*%). Combining (*) and (**) gives us 6cie™ 2 = (22 + 223)w’ + 24w and 3cpe =

(223 — 222w’ + z*w”. So

1 1 22 24
w= g[(2z3 — 22w’ + 24" + 6[(,22 + 225w’ 4 2] = <z3 — 2) w' + Ew”.
This is equivalent to z4w” + (223 — 22)w’ — 2w = 0. O
(3)

Proof. Let w = cowi + ciwy. Then we note w| = %wy and wy = —Hw;. So w' = co - Hwy — ¢1 - Hws.
Multiplying both sides by 22, we get z?w’ = cpaws — ciaw; (*). Differentiating both sides again, we have
22w’ + 22w = cpa (—;%) wy — C1a (;%) wa, i.e. 223w + 2 " = —cpa’w; — crawy (**). Combining (*) and
(**), we can get

ac12?w’ + co(223w" + 24w") = —(c2 + c3)a*w;

acoz?w’ — ¢ (223w + 24w") = (& + ¢2)aw,.
Using the fact w = cow; + cywq, we can easily get z*w” + 223w’ + a?w = 0. O

(4)

Proof. Let w = cow; + cywa. Then (22 — 1)w = ¢pz? + ¢; 2. Differentiating both sides of the equation gives
2zw + (22 — 1)w’ = 2¢pz + ¢1. Differentiate again, we get 2w + 2zw’ + 22w’ + (22 — 1)w” = 2¢y. Solving for
Co, C1, and plug the expressions into the equation w = cow; + ciws, we get

2222 — Dw” +22(2* + D)w' — 2w = 0.

2. (1)

Proof. p(z) = 2° and q(z) = 0 are both analytic. So the solution w(z) is analytic and assumes the form
w(z) =Y peyarz®. Then

"'~z w—Zak k(k—1)z Zakz :2a2+6a32+2[ak+2-(k+2)(k+l)—ak_g]zk:O.
k=2

Clearly, ap = w(0) and a; = w’(0). By the uniqueness of power series representation of an analytic function,

we have as = a3 =0, and apio = (kéﬁ% So
S Gak—1)  _ ag _ ao _ aof(%)
YT 4k (Ak—1) 4k (dk—1)----- 4-3 42l (k-1 1) T 2tk k.T(k+ 3)
and
A4(k—1)+1 ay ai alI‘(§)
Agpy1 = = =

oo 3 2\4n 0o 2\4n+1
Let wi(z) = >, #ﬁr%) (2)" and wa(z) = 307, % (%) 1 Then w(z) = apwi(z) + arwa(2).
O
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(2)
Proof. p(z) = z and ¢(z) = 0 are both analytic. So the solution w(z) is analytic and assumes the form
w(z) =Y peyarz®. Then
w' — 2w = Zak k(k—1)z Zakz
— Z anpa(k+2)(k+1)zF — Z ap_12*
k=0 k=1

= 2a9 + Z[ak+2(k +2)(k+1) — ap_1]2"

k=1
= 0.
Clearly, ap = w(0) and a; = w’(0). By the uniqueness of power series representation of an analytic function,
we have as = 0, and apio = % So
g = —3G=D do o __al(3)
T3k (3k—1) 3k-(3k—1)----- 32 3.kl (k—2)--(1-1) 3% K.T(k+2)
and
a (U V5 3 S a1 4 ax B alf(g)
LT Bk + 1) - 3k (Bk+1)-3k--- 4-3 7 3%k fl(k+ 5 (1+1) " 3%k T(k+2)

(2 (4 L3n+1
Let wi(2) = Y0, %3% and wy(z) = 327, #{f}r%)w
(3)

Proof. The equation can be written as w” + p(z)w + ¢(z) = 0 with p(z) = %5 and ¢(z) = — 5. So +1
are two singularities of the equation and the equation has an analytic solution in a neighborhood of 0 (e.g.
D(0,1) := {z : |2| < 1}). Suppose w = > p-, axz". Then

. Then w(z) = apw1(2) + a1wa(2). O

(22 = D" + 20" —w = Z[(k —D)(k+ Dag — (k4 1)(k + 2)ans2]2" — (ap + 2a2) — 6azz = 0.
k=2
Therefore, ag = w(0), a; = w'(0), ag = —%0) az =0, and for k > 2,
a - (k‘ — 1)ak
k+2 — k+2 .

From a3 = 0, we conclude as;+1 = 0 for k£ > 1. Moreover

e 2k —3 2k-3 2k75a [k -1) = 3(k=2)—=3]---(0—3)  T(k—3)
2k = o G2k-2 = T oo Ook—4 = = o Tl a = I‘(—%)ao'
Let wi(z) = > pep klj(ﬁ( 2))2 and wq(2) = z, we get w(2) = agwi(z) + ajwa(2).
Remark 1. Note wy(z) is the Taylor series of V1 — 22.
O

(4)
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Proof. The equation can be written as w” + p(z)w + ¢(z) = 0 with p(z) = f$jfj§ and ¢(z) = ﬁ So

%‘/‘;’i are two singularities of the equation and the equation has an analytic solution in D(0,1). Suppose
w =32, arz". Then

(1+z+27)w" +2(1422)w' + 2w = Y (k+1)(k+2)(ak+ars1+arp2)z" +2(a0+a1+a2) +6(ar+az+as)z = 0.
k=2

Therefore, we have
ap+ay +ax =0

a1+a2+a3:0
ag + ag+1 + ape2 =0 (k> 2).

Solving it gives us agr = ag, ask+1 = a1, and agg+o = —(ap + a1). Plugging in the values of ay’s, we get
after simplification w(z) = apw1(2) + ajwe(2), where wq(z) = H}jﬁ and wz(z) = 17577 Equivalently, we
can choose another basis with two linearly independent solutions: w; = ﬁ and wa(2) = 552

Remark 2. We can solve the problem more directly once we note
2
@[(1 + 24+ 2 w(2)] = (14 2+ 22)w"(2) + 2(1 + 22)w' (2) + 2w(2).

So (14 2z + 2H)w(z) = ap + a1 2, i.e.

ag a1z
w(z) = )
() 1—|—z+z2+1+z—|—z2
O
3. (1)
Proof. The equation can be transformed to w” + p(z)w’ + ¢(z)w = 0, where p(z) = 21(1_3);) and ¢(z) =
—Zzﬁ'fz). So 0 is the singularity of the equation. Since zp(z) = % and 22¢(z) = —}fz are analytic in

0 < |z] < 1, the equation has two regular solutions in 0 < |z| < 1:

wi(z) = 2P S0 o ekz® (co #0)
wa(z) = gwi(2) Inz + 2°2 302 o dpzF (g # 0 or do # 0)

for some constants g, p1 and ps. p1 and po satisfy the index equation p(p — 1) 4+ app + by = 0, where
ap = lim, .o 2zp(z) = 1 and by = lim, ¢ 22q(z) = —1. So the equation for p becomes p?> = 1 and p is
therefore 1. Suppose w(z) has the form of 27 3> ¢, 2", then we can get the following the recursive relation

n—1

[(n+p)(n+p— 1) +ao(n+p) +bolen + 3 [an—i(l+ p) + bailer = 0 (n > 1),
=0

where a,,’s and b,,’s come from the Laurent series of p(z) = Yo, a;2' =1 and g(z) = Y72, biz! 72, respectively.
We then find the Laurent series expansion of p(z) and ¢(z) as follows:

1 oo 1 oo
_1_ ! __t 1-2
p(z) = , 2 lg_o 2" q(z) = = 2 lg_l z 7

Therefore the recursive relation can be simplified to

[t Dyt (4 1)~ Tew + S [-2004 1)+ (~2)]er = 0.
=0
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Define &, = (n + 2)¢, (n > 2). Then this relation can be further simplified to

gn Zk 0 €k

It’s easy to see by induction that &, = (n+ 1)§p = (n + 1)¢p. Therefore

= k+1 = 2, 2kt oz ¢
z):z”chz cozk+2 k+1_0022k+1_%2k+2: 132_?0[_111(1_'2) z] = cows (2),
x k= k=0

In(1—=2)

where wy(2) = 1= + . From formula (6.27b), we can conjecture wy(z) = . Then it’s easy to verify

this conjecture is indeed true. O
(2)

Proof. The equation can be transformed to w” 4+ p(z)w’ +¢q(z)w = 0, where p(z) = -2 and q(z) = 5 +422.

So 0 is the singularity of the equation. Since zp(z) = —g and 22¢q(z) = —|— 42* are analytlc in 0 < |z|, the

equation has two regular solutions in 0 < |z|:

wi(z) = 2P 302y ekz®, (co #0)
ws(z) = gur(2) In = + 22 3 di*, (g # 0 or do #0)

for some constants g, p; and ps. p; and py satisfy the index equation

p(p —1) +aogp +bo =0,

where ag = lim,_,, 2p(2) = —% and by = lim, g 2%q(2) = %. Solving the above equation gives p1 = % and
p2 = 3. We note the Laurent series expansion of p(z) and q(z) are, respectively, —== and 55 + 42°. So
ag = 7% and a, =0 forn > 1; bg = 7, by =4, and b, = 0 for n > 1 and n # 4. Therefore, the recursion
equation

n—1

[(n+p)(n+p—1) +ao(n+p) +bolen + Y _[an—1(l+p) + bpi]er =0 (n > 1)
=0

is simplified to

8 7
{(n +p)? — g(n +p)+ 9} en+ lip>aydcn g =0(n>1)

and we can conclude

{0 ifn=1,2,3
Cn = 4cp_—a .
I e ey e if n > 4.
Now let p = p1 = % Then for n > 4,
4Cn—4
Cp=——F—=
n(n +2)
Define & = cq, (k > 0). Then for k > 1,
48k—1 Sh—1

T4k 42) T @R kD)

k k
By induction, it’s easy to see & = (;;41_1)150 (é;j_)l)!co. Therefore

(2) = coz% i (—1)k LAk CoZ% i (—1)* 22 = cow (2)
= (2k +1)! — (2k +1)!
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where w1 (z) = 23 sin(z?). Similarly, by choosing p = po = 1, the recursion equation can be written as
k
(n2 — 2n)ey, + 4¢,,—4 = 0, which leads to the solution cqx, = %co. Therefore, the other solution is

Wl

wo(2) = 2z

- (_1)k 4 1 2
kzzo ). 24 = 23 cos(2?).

3)

Proof. The equation can be transformed to w”(z) — w'(z) + Lw(z) = 0. Let p(z) = —1 and ¢(z) = 1. Then
2p(z) = —z and 2%g(z) = z are both analytic in |z| > 0. By Theorem 6.3, the equation has two regular
solutions in |z| > 0:

wi(z) = 2P0 > 5 cx2® (co #0)
wa(z) = gwy(2)Inz + 22 Y02 dpz® (g #0or dy #0)
for some constants g, p1 and ps. p; and po satisfy the index equation
p(p—1) +aop+bo =0,

where ag = lim, o zp(z) = 0 and by = lim, . 22¢(z) = 0. So p; = 1 and ps = 0.
Suppose w(z) has the form z* Z?:o cnz2™. We can get the following recursion equation

n—1
[(n+p)(n+p—1)+ao(n+p) +bolen + Y _[an—i(l+ p) + bui]er =0 (n > 1).
=0

Since ag = bg =0, a1 = -1, a, =0 (n > 2), by =1, b, =0 (n > 2), the above equation can be further
simplified: if n = 1, the equation becomes

(p+1)p-c1=0;
if n > 2, the equation becomes
(n+p)(n+p—1)en+(—n+2 = p)ea_t =0.

We first let p = p; = 1. Then ¢ = 0 and (n + 1)nc, = (n — 1)¢p—1 for n > 2. Therefore, ¢, = 0 for
n > 1, and one solution of the equation is

So we can let wy(z) = z. We then let p = po = 0. Then ¢; can be any number and n(n —1)¢, = (n —2)cp_1
for n > 2. This implies ¢,, = 0 for n > 2. The corresponding solution is therefore

oo
2P? Z cpz" = co + 2.
n=0
So we get back to the same solution w(z) = z. This means we have to try the other form of the solution

o0 oo
wa(2) = gwi(2) Inz + 27 Z dp2" =gzlnz+ Zdnz",

n=0 n=0

where g is a constant. Note

wh(z) =glnz+g+ Z donz""t and wh (2) = g + Z dpn(n —1)2"2,
n=2

n=1
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So

wy (2) + p(2)wy(2) + ¢(2)wa(2)

[ee] oo (oo}
g n—2 n—1 n—1
= |24+Y dunin-1 — g1 N d, mz+ Y d,
Z+n:2 n(n—1)z ] [g nz—l—g—l—n:ld nz + gnz+n:0d z ]
+d -
= IO (s g) + Y e+ 2)(n 1)~ dyan] 2"

n=1

Therefore the necessary and sufficient condition for w4 (z) + p(z)wh(z) + ¢(z)w2(z) = 0 to hold is

g+do=0
g:2d2
dpyo(n+2)(n+1) =dprin (n > 1).

We have g = —dy and dy = —%do. By defining &, = (n — 1)d,, (n > 2) and working by induction, it’s easy

to deduce d,, = m for n > 2. So we have
wa(z) dozlnz +do+dy2z 3 do z"
2(2) = —do o+diz— E — % -
— .nl
—~ (n—1)-nl
Note w(z) = z is already a solution, so we can let wo(z) = zlnz -1+, #711) O

(4)

Proof. The equation can be transformed to w”(z) 4+ p(z)w’(z) + q(2)w(z) = 0, where p(z) = 1 — 1 and

q(z) = 1. Since zp(z) = z — 1 and z%¢(z) = z are both analytic in |z| > 0, the equation has two regular

solution in |z| > 0:
{wl(z) =20y 07 ep” (co #0)
wa(z) = gwy(2)Inz + 22 302 dpz® (g #0or dy #0)
for some constants g, p1 and ps. p; and po satisfy the index equation
p(p—1) +aop+bo =0,

where ag = lim,_ zp(z) = —1 and by = lim,_ 22¢q(2) = 0. So p; =2 and py = 0.
Suppose w(z) has the form z ZZOZO cnz™. We can get the following recursion equation

n—1
[(n+p)(n+p—1)+ao(n+p) + bolen + Y _lan—i(l+ p) + boi]er =0 (n > 1).
=0

Since ag = —1, a3 =1, and a, =0 (n > 2); by =0, by = 1, and b,, = 0 (n > 2), the above recursion equation
can be further simplified to (n+ p — 2)c, + ¢1 = 0.
We first let p = p; = 2. Then it’s easy to see ¢, = (_nl‘) ¢p. So we can let wi(z) = 22 ZZOZO (_nl!) 2" =

z2e~%. We then let p = py = 0, and the recursion equation becomes (n—2)ep+cn—1 =0 (n>1). It’s easy to

n

see cg = c; =0 and ¢, = %02 for n > 2. Plugging these values into the formula w(z) = 22 ZC:LO:O cn 2",
we get w(z) = cpz?e~*. This is the same as the first solution, so we have to try the other form of the solution

o0 oo
wa(2) = gwi(2)Inz + 27 Z dn2" = gz’e *Inz + Z dnz",
n=0

n=0

30



where ¢ is a constant. Note

wh(z) = ge *(2zInz — 2°Inz 4 2) + Z dpnz"t

n=1
and -
wh(2) = ge 73 —22+ (2—4z+ 2% Inz] + Z(n — 1)nd,z" 2.
n=2
So
do—d =
w”(2) + p(2)w'(2) + q(2)w(z) = —ge *(=2+ 2) + ——— + > (n + 2)(ndpy2 + dns1)2"
n=0

Set w”(2)+p(z)w' (2)+q(z)w(z) = 0. Then it’s easy to see g = 0 and by induction we must have dy = d; = 0,
n—1
dny1 = %dg for n > 2. This leads us back to the first solution.

Therefore, we apply Liouville’s formula, formula (6.30), to get the second solution: (note p(z) =1 — %)

w(e) = wi) | Z{Wexp [— / np(f)dg}}dn

w1(z) /z {[11;1(177)]2 exp [—n+lnn]}dn

z

Denote by Ei(z) the exponential integral function Ei(z) = [~

- %df . Then by integration-by-part formula,
we have

—e*(1 2Fi(3 1
wo(z) = 2% - A Agn 7 il = —[-(1 4 2) + 2% *Ei(2)].
222 2
Remark 3. Verify the wy(2) represented in this form is the same as the ws(z) given by the textbook’s
solution.

O
4.

Proof. In the given equation, we have p(z) = 2 and ¢(z) = m?. Since zp(z) = 2 and 2%¢(z) = m?2? are both
analytic in |z| > 0, the equation has two regular solution in |z| > 0:

wi(z) = 2P Y72 cpzk (co #0)
wa(z) = gwi(2)Inz + 2°2 302 dkz® (g #0or dy # 0)

for some constants g, p1 and ps. p; and po satisfy the index equation
p(p—1) +aop+bo =0,
where ag = lim,_ zp(z) = 2 and by = lim,_ 2%¢(z) = 0. So p; =0 and py = —1.

Let wy(z) = 2P 300 (2™ =Y 07 cpz™. Then

wi(z) = Z Cni1(n+1)2" and wi(z) = Z Cn2(n+2)(n+1)2".
n=0

n=0
Therefore
" / - 2 n 2¢;
w”(2) + p(2)w'(2) + q(2)w(z) = Y _[enta(n+2)(n+ 3) + micy]2" + — =0
n=0
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This implies

Cc1 = 0
Cnr2(n+2)(n+3) +m?c, =0, n>0.
If m = 0, the equation has only a constant solution w(z) = ¢g. If m # 0, we must have

—m?2

— ¢, n>0.
nt2)nt+3)™"

Cpn42 =

Define & = cox (k > 0). Then the above relation can be written as

—m2 —m2

2k +3)(2k +2)* T 2k +3)(2k + 2)

&k

§kt1 = Cokp2 =

—m2 —m2 —m2 c
(2k+3)(2k+2) (2k+1)-2k 3-2°
(_1)k+1m2(k+1)

Qk+1)+1)°

Therefore
o0 (oo} (oo} .
_ n_ (=1)Fm2* 2k _ m2h Tl L2kt | sinmz
(Z)_Z_:an _CO+CO;(2k+1)!Z —mZ 2:1 2k—|—1 =co——.
Let wy(z) = 2,237 d = 4 3% dns12". So wh(z) = =B + 37 dprinz"! and wf(z) =

Qdo + 30 g dppin(n —1)2" 2 Therefore

2dy + m?
z

wh (2) + p(2)wh(2) + q(z)wa(z) = + Z[(n +2)(n+ 3)dyis + midy]2"

n=0

Then we have the equations for d,,’s:

2d2+m2:0
n+2)(n + 3)dpts + m?dpi1 =0, n > 0.
+ +

Following a procedure similar to that of the first solution, we can easily find d,’s and prove the second

solution is wy(z) = 202, O
o.
Proof. In the given equation, we have p(z) = 1 and ¢(z) = —m?. Since zp(z) = 1 and 22¢(z) = —m?2? are
both analytic in |z] > 0, the equation has two regular solution in |z| > 0:

wi(z) = 2P Y02 cpzt (co #0)

wo(z) = gwi(2)Inz + 2°2 302 dkz® (g #0or dy #0)

for some constants g, p; and ps. p1 and py satisfy the index equation
p(p—1) +aop+bo =0,

where ag = lim,_ zp(z) = 1 and by = lim,_,0 2%¢(2) = 0. So p1 = pa = 0.
Let w(z) =27 Y 0" g cnz™ = >0 g cnz™. Then

w”(2) + p(2)w'(2) + q(2)w(z) = a, Z[cn+2(n +2)% —m?e,]2".

z
n=0
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So we have the equations for ¢,,’s:

c1 = 0
2
Cnt+2 = (717172)207“ n > 0.
Working by induction, it’s easy to see (k > 0)

0, n=2k+1
Cp = (E)Zk
(?CWCO, n = 2k.

Therefore, one solution of the ordinary differential equation is

i ( >2k = Ih(mz),

k:O

where I,(z) is the modified Bessel function

I 1 2k+a
k'F(k+a+1) (2) ’
Note the series representation for Bessel function J,, is

1)k: ( )2k+n

:Z El(k+n)

=0

w1(2) can also be written as Jy(imz).
To get the other solution, we let w(z) = glo(mz)Inz + >~ d,2", where g is a constant. Plug this
representation into the equation w”(z) + p(2)w’(z) + g(z)w(z) = 0, we can get equations for g and d,,’s.
Now the computation becomes really messy, so we omit the details for this version. Mathematica com-
mand DSolve[w” [z]4+wW’[z]/z - m~ 2w[z] == 0, w]z], z] gives the two solutions as Jy(—imz) = Jy(imz)
and Yp(—imz). Here Y, (z) is Bessel function of the second kind and is defined as

Jo(z) cos(am) — J,a(z).

sin(az)

Yo(z) =

Remark 4. Verify wy(z) represented in this form is the same as the wa(z) given by the textbook’s solution.

O

7 Residue Theorem and Its Applications

7.1 Exercises in the text

7.1.

Proof. Suppose f(z) has Laurent series > - apz™ in a neighborhood of 0. Then

n=—oo

oo oo

FE) = g+ f 2 =5 3w (07 = Y e

n=-—oo k=—oc0

So for p sufficiently small, Res(f,0) = Zk,_oo 5 fIZ\ — 2%kdz = 0, where the last equality is due to Cauchy’s
integral formula. O
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7.2. f(z) can be written as z"g(z) in a neighborhood of 0, where g(z) is analytic near 0 and g(0) # 0.
Without loss of generality, we assume n > 1. Otherwise, all the residues below equal to 0.

(1)

Proof.
Fe) _nlge) 12 _n g(e)
f(2) 2"g(z) 2 g(2)
So Res(f'/f,0) =n. O
(2)
Proof. If n =1,

f1z) _ Mg +2g'(2)) _ 29'(2) +29"(2) _ 2 g'(2)  g"(2)
f(z) f(z) zg(2) 2 :
So Res(f”/f,0) =2¢'(0)/g(0). If n > 2,

f'(z) _n(n—1)2""2g(2) +2nz"""g'(2) + 2"¢"(2) _ n(n—1) L2 gle) | g"()

fz) f(2) 22 z gz g(z)’
So Res(f/f,0) = 2ng'(0)/g(0). Combined, we conclude Res(f"/f,0) = 2ng'(0)/g(0). O
(3)
Proof. Tt n =1,

f"(z) _ 29'(2) + 29" (2)
'z 9(z2) +29'(2)
is analytic near 0. So its residue is equal to 0. If n > 2,

f’(z)  nn—1)2""2g(z) +2nz""1g'(2) + 2"¢"(2) 1 n(n—1)g(2) +2nzg'(2) + 229" (2) .

f'(2) nz""lg(z) + 2"g'(2) z ng(z) + zg'(2)
Note the second term in the product is analytic near 0, so Res(f”/f’,0) = "(nf1)gf;éiiig,((z))+229/,(Z) =
z=0
n — 1. Combined, we conclude the residue is equal to n — 1. O
(4)
Proof. If n =1,

(n—1f"(z) —2f"(z) _ ["(x) _ 29'(x) +29"(2)
f(2) f(2) 9(2) +2¢'(2)

is analytic near 0, so its residue at 0 is equal to 0. If n > 2,

(n=1Df'(z) = 2f"(2) f'(z) _ 1"(2)

() ) TG

where the second to last equality is due to part (1) and (2). O

=(n-1)

=nn—1)—n(n—-1)=0,

7.3. f(z) can be written as z~"g(z), where g is analytic near 0 and ¢g(0) # 0. Without loss of generality, we
assume n > 1. Otherwise, all the residues below are equal to 0.

(1)
Proof.
f'(z) _zna ") + 27 (z) L mng(z) +29'(2) o g'(2)
f(2) 27"g(2) 29(2) z o g(z)’
So Res(f'/f,0) = —n. O
(2)
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Proof.

f(z)  nn+1)27""2g(z) — 2nz~

n—1_/

9

(2) + 279" () _

HOR
g'(0)

So the residue equals to —2n<>=

z7"g(z)

9(0)

3)
Proof.

f'(z) _n(n+1)27""2g(z) —2nz"""1g'(2) + 27"9"(2) _ 1 n(n+1)g(z) — 2nzg'(2)

f'(z) —nz""lg(2) + 279 (2)

Note the second term in the above product is analytic near 0, so the residue is equal to

n(n+ 1)g(z) — 2nzg'(2)

+ z2°g

(4)

—ng(z) + 29’

(2)

n(n+1) 2ng'(z)  ¢"(2)
22 )
O
+ 229//(2)
—ng(z) + z9'(2) '
(n+1).
O

Proof. (n+1)f"(2) +2f"(z) = —(n+1)nz"""tg(z) + (n+1)z7"¢'(2) + n(n+ 1)z " 1g(2) — 2nz""¢'(2) +
27" (2) = —(n — 1)z~ "¢/ (2) + 27" T1g"(2). So

(VI + 1)~ ) () )
f(z) - 2 ng(z) 9(z)  g(2)
So the residue is equal to 0. O
7.4.
Proof.
function given conditions type of singularity residue
?8 2o are zeros of g(z), f(z) and has the same order removable 0
% 9(20) #0, f(20) =0, f'(20) #0 pole of order 1 J?,(é"o))
?8 zo is zero of g(z) of order m and zero of f(z) of order m+1 pole of order 1 W
o 9(20) # 0, f(20) = f'(20) =0, "(20) # 0 pole of order 2
(29_(2)2 9(20) £ 0 pole of order 2 J'(20)
?8 20 s zero of f(z) of order m and g(zp) # 0 pole of order m
?8 20 is zero of g(z) of order m and zero of f(z) of order m+n pole of order n
O
7.5.
Proof. f*(z) = ¢ + 22 4+ L P(2), where P(z) is a power series of 1. By formula (7.12), Res(f,00) =
—20001. O
7.6.

Proof. Suppose the singularities of f are aq, -
of f fall in the disc |z| < R. Then Cauchy’s theorem implies

1

21 |z|=R

f(Z)dZ - Z Res(f, ai) = Oa

i=1,]a;|<oo

ie. Y7 Res(f,a;) + Res(f,00) = 0. So the sum of residues of f on C is 0.
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7.7.

Proof. Let 0, = argfr (k = 1,2,--- ,m) and p be a positive number that is sufficiently small. Define
C, = {z: |z| = 1,|argz — 0| > p,1 < k < m}. Define 4 as the arc that starts from (=) ends
at €'%+P) has B, = €% as the center, and dents toward origin. Then by Residue Theorem, for p > 0

sufficiently small, we have
% {7
=27
‘/CVPU'YIU“'U'Y'm ZZ Z

|z|<1
Then for each k € {1,2,--- ,m}, we have

@2(p) i )
@dz = / Mpe’aida,
- F #1(p) B + pe
where ¢2(p) — ¢d1(p) — 7 as p — 0. Since S is a pole of order 1, in a neighborhood of S, we can write f(z)

as i(—;)k where g(z) is analytic near 8. Then (note res {@,ﬁk} = %)

fG) [P 9Bt pe®) 9(B) _ f(z) ,
Zdz_/¢1(p) W[)e zda%wzw —Zﬂ'res{z,ﬂk}, as p — 0.

— Tk

Therefore

2TrR(sinH,cosG)d@ = ,Ho/ f 27Tzres{f } pHOZ/ f

0 |z|<1 gL
= ZWZres{f(Z)}—l—ﬂires{f(z),ﬁk}.
2|<1 & k=1 &

Remark 5. The above result and the trick of indenting the contour can be found in Whittaker and Watson
[11], §6.23, page 117.

O
7.8.
Proof. We compute a more general integral fo T + — where p € (1,00). Choose two positive numbers r and
Rsuch that 0 <7 <1< R. Let vy = {2z :r < |z|] < Ryargz = 0}, 7o = {2 : r < |2| < R,argz = 27},
vr={z:]z| = R,0 < argz < 27} and ~, = {z t)z] = 1,0 < argz < 27}, Define f(z) = % where

2P = ¢ is defined on C \ [0,00). Note by substituting y% for x, we get

/°° dx _/°° y%dy
o l+ar  Jo ply+1y

By Residue Theorem,

1
— P 2 oge™ -
/ F(2)dz = 20Res(f, 1) = 2mi . DT 2 st o e
1+YR—Y2—Yr -p p
where a = %. We have the estimates
2 log(Re ) ) QWR%
f(2)dz| = / —— - Re'’ - idf)| < 0
h Re‘9+1R p(R—1)
as R — oo,
27 log(re'”) ) 2y
dz| = — e ide| < 0
[ 1| = | [ e 40| < i
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asr — 0, and

[ sea=- [ feemyrde / faida
Q - Jo pla+Dz ), plz+ 1)z '

Therefore by letting » — 0 and R — oo, we have

/OO dx /°° r7® —2ie® —2ie® @ T T
= = - = = - = — =—csc|— ).
o l+azr  Jo ple+l)z  1-e*  —2sinae+9?  sina  p P

O
7.9.
Proof. This is a special case of exercise 7.10. Answer: g—g (verified via Mathematica: Sum|[1/n" 4, n, 1,
Infinity]).
7.10.

Proof. Let Cy be the contour used in Lemma 7.2: Cy = [N + 2 (N + 3)i,—(N + 3),—(N + 1)i, N + 1].
Then by Residue Theorem,

7rcot7rz weot e
% ———dz = 2mi Z ( ,n).
Cn

n=—N

z =01is a pole of order 1 for cot z. So we can assume the Laurent series of cot z near 0 is Y~ baj—122" 1.

Then
meot Tz i 7 bop_q(mz)?1 ~ Z boy_1m2"

22k 22k ZQ(n k)+1

n=0

Therefore, for p > 0 sufficiently small,

cot mz 1 cot mz
msl—lﬁ:>f/ O T2 1y = b2
22k 270 J|s1=p 22k
For n # 0, take p > 0 sufficiently large, we have

t 1 -1H" . — 1 1
Res (FtT= Y 7/ (1) cos 2 m(z=n) g b
22k 21 J|yopj=p 2 sinm(z —n) z—n n2k

Combined, we can conclude

t 1
% Mdz = 2m bgk 171' +2Z 2k
oy #

n=1
By Lemma 7.2, 1imN_,oo $o, TSEdz = 0. So Y07 o = —baroin2k - From formula (5.25), we have
4
b_1=1,b = 3, bz = —4—15, bs = 945,etc In particular, for k = 2, bop,_1 = b3 = . So En 15 L= 50
which gives the answer to exercise 7.9. O
7.11.

Note sin z is an odd

Proof. We first deduce the Laurent series of Sirllz near 0. 0 is a pole of order 1 for

SlIl z"
function, we can assume its Laurent series near 0 is Z;ﬁo byi_12%=1. Then

] & 3 s -1 k & (n—l)
L= sinz Y boy 2™ 1:2(2(“)1)!%1.2@“22 =Z szl e E
n=0 k=0 =0 =

37



Sob_; =1 and Zl":o 521—1(2(;1_)7% = 0 for n > 1. Using this, we can easily get the Laurent series of

(verified by Mathematica: Series[z/Sin][z], {z, 0, 10}])

1
sin z

1 L,z 723 N 312° N 12727 N 732° +o(=19)
=—-—+ <+ == o(z™").
sinz  z 6 360 15120 604800 = 3421440

Let Cy be the contour used in Lemma 7.2: Cy = [N+ 3, (N + 1)i,—(N + 3), = (N + )i, N + 1]. Then
by Residue Theorem,
N

™ . i
2.7dz = 2m g Res (27,71) .
Cn zZeSI Tz zesmmmz
n=—N
1

sinmz?

we can deduce

™ T
Res (——,0) = %
cs 22sinmz 6

For n # 0, we can find p > 0 sufficiently small, so that

1 (-1)"m(z—n) 1 L (=™
/an—p ! .

From the Laurent series of

T
Res (27,11) = - 5 5
zZ2sinmz 2mi 2?2sinm(z—n) z—n n

Therefore $o. i dz = 2mi [%2 -2%00, (_1)%1] Suppose limy—.c0 fo s7sfrzd2 = 0, then we can

z2sinmz n?
conclude > (7173:71 = 7{—; (verified by Mathematica: Sum[(-1)" (n - 1)/n" 2, n, 1, Infinity]). O

7.2 Exercises at the end of chapter

1. (1)

Proof. Res (Zei, 1) = ez2|z:1 =e. O
(2)

Proof. Res (%, 1) = d%ez2|z:1 = 2e. O
3)

Proof. 1 —cosz =3, %z%. So 0 is a pole of order 2 for (

_Z
l—cosz

z 2 1 2 dz d 2
Res S E— ,0 = — TR} = — Y}
1—cosz 21 Jiz)=p (1 —cos2)? 2 dz | (1 —cosz)?]|._,

By repeatedly applying I'Hospitale’s rule for analytic functions (see exercise 5.1, 5.2 in the text, page 62)
and the fact lim,_,o #2£ = 1, we can conclude the residue is equal to 0. O

(4)

Proof. By repeatedly using I’Hospitale’s rule for analytic functions and the fact lim,_,q

1 1 z d? z
R 0) =Res (5 =——0) = 7 (=)
° (z2 sin z ) ° (z3 sin z ) dz? \sinz

2
) . For sufficiently small p > 0,
we have

sin z
z

=1, we have

1

z=0
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Proof.

(6)

Proof. Let z, = — (%’/T)? If we take the convention that \/—1 = 4, we have \/z, = (nm + §)i. It’s casy
to see cosh /2, = cosh[(n7 + §)i] = cos(nm + §) = 0, and

| isinhyE sm(nr+3) (-1
1 hy/z) = lim ooV 2] _ .
Jim (coshv/2)" = Tim NE @n+)r  @n+

So z, is a pole of order 1 for m and

1 Z—Zn 1 . Z— 2z 1
R L) =R : ) =1 - — (=1)"(2n + ).
° (cosh \/E’Z ) s (cosh\/g PR ) T coshy/z  (cosh/z)|.=2, (=1)"(n + 1)

O
2. (1)
_ 1
PTOOf. Let f(z) = m. Then
1 a1
Res(f,0) =~ —-——| =1
es(£,0) 2! dz21-22|,_, ’
Res(f,1) = —%, and Res(f, —1) = —%. 00 is a removable singularity. O
(2)
Proof. oo is a removable singularity. Let f(z) = (Zz_,’_i)nﬁ»l = (ZH-%,,”H : (z_lémﬂ. Then
N 1 1 omet| =i (2m)!
Res(f,1) = ——— {(z T i)mﬂ] ‘_ = =+ D][=(m+2)] - (=2m)(z +1) T Qmm (2
Similarly, we have Res(f, —i) = Wﬁl% O
®3)
Proof. 1 — cosz = 2sin? 2. S0 2, = 2nm (n € Z) is a pole of order 2 for the function f(z) = ;=5—. Note
for each n,
Z—aZanT 2 Z—4ZNT 2
PTG R
2Sin2 % 9 (Zignﬂ.)Z sin2 z—gnﬂ' (Z _ 2n71‘)2 Sin2 z—gnﬂ
Define h(w) = Z“—. Since the Laurent series of —— near 0 is

1 _1_‘_3_’_7723_'_ 312° n 12727 n 7329 —l—o(zlo)
Tz 6 360 15120 604800 @ 3421440 ’

sin z
we have the Luarent series of h(w) near 0:

h(w) w - w? N Tw? N 31w N 127w N 73w10 N
w) = = —_— + — o
sin w 6 360 15120 = 604800 @ 3421440

(w').
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Therefore, h(0) = 1 and A/(0) = 0. Moreover,

Res(f,2nw) = Res ((1 - 2zh? <Z 22n7r) ,2n7r>

z — 2nm)?
= lim i {2,2}12 (E fmrﬂ
z—2n7 dz 2
o 2 (% _ . T_ r(Z_ 1
= lm [% (2 m>+22 2h<2 m)h (2 m) 2}
= 2.

(4)
Proof. Let f(z) = —Y*~. Then sinh/z = 0 if and only if z = —(nm)? (n € Z). Let 2, = —(nm)%. Then

sinh /z*
(zn)nez are singularities of f(z). For n =0, zp = 0 is a removable singularity since

Nz, 1

z
1. = =
=20 Sinh vz cosh0

Therefore Res(f,0) = 0. For n # 0, we have (suppose p > 0 is sufficiently small)

= L VEEIWER VR ), AR VR g, gy
lz—zn|=p # ~ #n

Res(f,zn) = 9 =

sinh \/z — sinh \/z, cosh /z,

Remark 6. This solution has a different result from that of the textbook’s solution. Check.

()

Proof. Both 0 and co are essential singularities of f(z) = exp [% (z —
and z — 0 along positive and negative real axis.
To find the residue of the function at 0, we note

. 1 1 >~ 1 1\"
Xp | = - = = il B
P 2 4 z — 2nnl & z

1

z

)]7 as can be seen by letting z — oo

For each n,

So the expansion of (z — %)n contains z~! term if and only if n is an odd number, and in this case, the
n—1
coefficient of z=1 is (—1)"3" < 2 ) So in the expansion of (z — 1), the coefficient of 2~ is

[e’e) o 1 m o (_1)m+1 1 2m—+1
z::(_l) ’ 22m+1(2m 4 1)! <2m+1) :mZ::O m!(mS-Q)l)! =—h),

m=0

where J,(2) is Bessel function of the first kind:

2= e )

m=0

So Res(f,0) = —J1(1). Since the above expansion is valid in C\ {0}, by remark on page 87 (formula (7.12)),
we conclude Res(f,00) = —Res(f,0) = J1(1).
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Remark 7. The results in the above solution have signs opposite to those of the textbook’s solution. Check.

O
(6)

Proof. oo is a removable singularity and 0 is a pole. Using the Taylor series of cosine function near 0, we
have
(=1

1 Z =
cos = .
| n

Vi = n)l oz

So the residue is equal to the coefficient of %, which is —%. O
(7)
Proof. Let f(z) = (2711) >+ Then 1is a pole of f(z) and oo is a removable singularity. When In1 = 2nmi

(n € Z\ {0}), for p > 0 sufficiently small,

1 1 1
:T/ PRz =9 =55
T J)am1)=p n nmi

When In1 =0, Z_Zl is analytic near 0. So for p > 0 sufficiently small, by applying ’'Hospitale’s rule, we have

In
1 1 z—1 d [z—1 1
Res(f,1) = — : dz = - Pl
es(f,1) 2mi /Iz—l—p (z=1)2 Inz T { Inz Hz_l 2

Res(f,1)

(®)

Proof. Let f(z) = % 14+ Zj_l + ﬁ 4+ 4 ﬁ} Then 0 and —1 are poles of f, while oo is a removable

singularity of f. For p > 0 sufficiently small,

1 1 1 1 1
Res(f,0) = —— “h b |d
es(£,0) i zﬂw[ et e et '+@+1w}z
= {1+ Loy ]
- z4+1  (2+1)2 (z+1)"]],._,
= n+1.
Since f(z) can be written as
11- (z+11)n+1 1 (2+1) 1
S b 1 SR e
we have
1 1 1 qr—1 ). (= —(n+1)
Res(f,—1) = 7/ ———dr = —————2"" =— (2)---(=n)2 —n.
270 Jpq1)=p 22 (2 1) (n—1)ldzn—1 I (n—1)! I
O
3. (1)
Proof. Note 1 is analytic on C\ {0}, so Res(,00) = —Res($,0) = —1. O
(2)
Proof. Note “22 is analytic on C\ {0}, so Res(“Z%,00) = —Res(“2%,0) = —1. O
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3)

Proof. Since cos(2nm + §) = 0 (n € Z), oo is not an isolated singularity. O
(4)

Proof. Since (2% + 1)e is analytic on C, Res((2% + 1)e?, 00) = 0. O
(5)

Proof. e = > %, which has no z~! term. So Res(e_z%,oo) = 0. O

(6)
Proof. Recall Res(/(z — 1)(z — 2),00) is equal to the coeflicient of the term z in the power series expansion

of — (% — 1) (% - 2) near 0. By generalized Newton’s formula, we have

1-2)1-22)=1—— —— — — — -

2 8 16
Depending on the branch we choose, we have V22 = +2z. So the power series expansion of — (i — 1) (% — 2)
near 0 is
O B
T\Z7278 16

Therefore, Res(y/(z — 1)(z — 2),00) = £+.

o=

4. (1)

Proof. The equation z* + 1 = 0 has four roots: z; = e?, 25 = e~ 1%, 23 = e%i, and z = e 7%, The
intersection points of [z — 1| = 1 and |2| = 1 are e¥3%. So only z; and 2, fall within the disc |z — 1| < 1. By
Residue Theorem, we have

dz 1 .y 1 .
—_— 21 | R — e4! R — e 4
}{le_11+z4 m{ es(1+z4,e >—|— e$<1+24,6 ﬂ
. . zZ—z . Z— 22
P <21L>H211 24 +1 +2151212 24 + 1>

(L0
- 423 423

.2 22
= Q- —"=
T

)

7

(2)

Proof. Using the same notation as in part (1), we first show all the roots of z* + 1 = 0 fall within the circle
|z — 1| = 2. Indeed, for any 6 € [0,27), ¢!’ — 1| = 2|sin &| < 2, where the equality holds if and only if § = 7.
So z’s (i = 1,2,3,4,) all fall within the circle |z — 1| = 2. Then by Residue Theorem and an argument
similar to part (1), we have

=27 - =0.

f dz B R e~ a7
lo—1j=2 1+ 2% —4
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®3)
Proof. By Residue Theorem,

1 Tz sin & 24
————sin —dz = 271 - 4 =
jI{z—1I=1 22 -1 4 1+1 V2

(4)
Proof. By Residue Theorem,

1 Tz sin = sm( )
———sin —dz = 2mi 4 4 2
le_g’ZQ—lSln 4 o Z<1+1 —1—1 ) \/> Z

(5)

Proof. The singularities that fall within the circle |z| = n are k + % with k = —n,—n+1,--- ,n—1. By
Residue Theorem, we have

n—1 . n—1 .
§ tonmadz = omi ol 2= (k4 gllsin(rs) _, 5~ _sin (b + 57)
|2]= t szJr 1 cos(7z)  —msin (kﬂ' + %77)

k=—

= —4ni.

(6)

Proof. Let z, (1 <n < 10) be the n-th root of the equation z'° = 2. For example, we can let z, = 210 ¢ 16" .
Then similar to our solution of part (1), Residue Theorem gives

7{ dz ori | L P 092 i 11 ]| migal i i’: P
4s _ =—y = = e )
2j=2 23(210 = 2) 2! dz? a0 it 23 102) 10 = 22 10-25 &
. R _ 273 1
Note El e o 171(8%)0 = 0. So the integral is evaluated to 0. O
—e 5

(7)
Proof. By Residue Theorem,

|
3.

e? 1 ad®
fjﬂl ;dz =27 - ? @6

z=0

(®)

Proof. We n(_)tse 2™z’ _ 1 = 0 if and only if for some k € Z, 2* = k. Since n < R < n + 1, a number z, is
a root of €2™#" — 1 = 0 within the circle |z| = R if and only if 23 = k for some k € [~n,n]. Suppose those
roots are z;. Then by Residue Theorem, we have (assume p > 0 is sufficiently small)

f oy S et IR EEL
omizd _ 1 dz = 2mi TI'ZZ ) 1 ) 73 NE '
|z|=R €2 — 270 2T 322 ? jol=p 2Mi° + 5 (2miz?)? + - 3 j#o3i<n ’

Remark 8. Note our result is different from the textbook’s solution.

43



5. (1)
Proof.

2m _1N 2n ) o
2n z+z dz 2 (2n)! / (22 41)

" Odo = a= _ J

/o o /z—l ( 2 ) iz 22(2n)! 2mi J,my 2t o

2m o, 2m  (n
-« = 1 2n -« = 2n
22n(2n)! dz2n (" +1) o 2%"(2n)! dz*n (2n> i 0
B ™  (2n)!
21 (pl)2”
O
(2)
Proof.
/2’r dx B / 1 dz / 4z dz
o (a+bcosz)? — J o, (a+bz+§_l)2 iz Jig=r (022 +2az+0)2 i

The equation bz% + 2az + b = 0 has two solutions: z; = =at¥a"=b~ Vbaz_b2 and zo = —e=vai-b? Clearly |zo] > 1

b
and |z1| < 1. So by Residue Theorem, we have (f(z) := and p > 0 is sufficiently small)

4z
(bz2+2az+b)2i

2m
dx
M oy
/0 (a + beos)? miRes(f, z1)

% 4z dz
o /Z_Z1|:p b2(z — 21)%(z — 22)? n
4 . d z

81 21+ 22
(a2 — b2)3/2°

3)

Proof. We note sin® = [1 — cos(26)]. Using the substitution rule § = o, we have

1
2

/” o /2” da 7%/ dz
o l+sin’0 J; 3—cosa ajm1 22— 624+ 1

The equation 22 — 6z 4+ 1 = 0 has two roots: z; = 3+ 2v/2 and 2z, = 3 — 2v/2. It’s clear that |z1| > 1 and
|z2| < 1. By Residue Theorem, we have

—_— =21 — —— = 47 = —.
1+sin%6 210z =1 (2 — 21)(2 — 22) z9—21 V2

/7r do . 2mi dz 1 T
0
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Proof. Similar to problem (3), we have the following argument:

/” do ) /2” da 8 / zdz o, L zdz
S —— = _— _— — v —
o (14sin%6)2 o (B—cosa)® i J, = (22 -62+1)2 21 Jiz=1 (2 — 21)% (2 — 22)?

d z 21+ 2 3m
= 167 — [(221)2} . - 167r(211j_z22)3 =
O
6. (1)
Proof. This is a special case of (3), with n = 2 and m = 1. See the solution there. O

(2)
Proof. Let f(z) = W Then for Cp ={z:0<argz <m,|z| = R} (R>0). When R > 1, we have by

Residue Theorem and Problem 2 (2) of this chapter

R i
/ f(2)dz+ [ f(2)dz = 2miRes(f, i) = 2mi - =
-R Cr 22nt
Furthermore, we note

f(2)dz| =

/7r Reid < /7T Rdf TR 0
-—_— = —
0 (1 + R26216‘)n+1 - o (R2 _ 1)n+1 (RZ _ 1)n+1

T n)!
T e = g (- -

as R — oo. So [~

3)

Proof. We note

o] me o) 1:2m 1 00 y%
————dx =2 ——dr = — —d
| i /o St = G

by the substitution rule 22" = y. Define p = then p > 1. In our solution of exercise 7.8 in the text,

2’m+1 ’
we already showed
s 1
/ Ldy = mcsc (ﬂ>
o (I+yy P
2m
So f_oo Tz dr = T cse (22 7). O

(4)
Proof. We note cosh(5z) = 0 if and only if z = (2n + 1)i (n € Z). Define f(z) = m
2
n # 0,—1, z, is a pole of order 1 for f(z) and we have (assume p > 0 is sufficiently small)

. Then for

1 1 Z n d 1 1 i (—1)ntt
ReS(f,Zn):%/ : 7r22 2° T QZ = - T D) :L( ) .
270 J|s—zp|=p 2 — #n cosh(§z) —cosh(§2,) 5(22+1)  sinh(5z,) 5(22+1) 27n(n+1)
To find the residue of f(z) at 4, define h(z) = gm Then h(i) = m = —i. Applying
I’Hospitale’s rule, we have
W) = tm 300G — 5 DFsinh(zs) _ = sinh(Zz) — %[Sinh(gz).qL (2 —i)Z cosh(Z2)]
o] [cosh(F 2)]? z—i 2 cosh (%5 2) 7 sinh(5z2)

z—i msinh (% 2) !
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Therefore

N d [ 2h(z) _ M) (z+0) —h(x)]] 1
Res(fvl) 9 % |:7T(Z+Z):| . - TI'(Z +Z)2 . - 27.”
% +1
- 1 i (=" 11 2102

Now we consider the path Cy = [-N, N, N 4+ 4Ni,—N + 4Ni,—N]. Then

f()dz=T+ I+ 0I +1I,

Cn
where
N 4N -N 0
I :/ f(x)dz, I = f(N +idy)idy, III :/ f(x +4Ni)dz, IV = f(—=N +iy)idy.
-N 0 N 4N
We note AN
dy 2 AN
1| < < : 0
M%), ) R S T W
as N — oo. Similarly, we can show |IV| — 0 as N — oo. Meanwhile, we have
N
d 2N
m) < | G\ S
-N (|x_|_4Ni|2_1)e2+2€ 2 16N2 -1

as N — oo. Therefore, [% f(z)dz =limy_o0 fCN f(2)dz and by Residue Theorem, we have

2N—-1 [e%S)

o 2In2
/ flz)der = lim f(z)dz = lim 2w Z Res(f, zn) = QWiZRes(f, Zn) = 2mi - 0 9m2.
oo N—oo Cn N—oo ot 70 271
Remark 9. In the proof, we used the following facts from calculus (see, for example, Shen [9], page 221):
(oo}
_&j n—1
S U
n=1

and

< ()G

1 1 1
= 1—2(1—2+3—4+--~>

= 1-2Iln2.

The calculus proof of > 0., (*12:1_1 = In2 needs a little bit trick. However, if we use theory of analytic

functions, then the proof becomes straightforward. Indeed, we note in the unit disc,

n—1_n

In(1+2) = i(—l)jz

n

The series > oo, %fﬂ clearly converges at z = 1. So by Abel’s Second Theorem (see, for example, Fang

[3], page 121), we must have

[e) o)
_ ) _ ) (_1)7171271 B (_1)77.71
1n2 o Ze]gglﬁlln(l + Z) - zG]%gl—ﬂnz::l n o nz::l n ’
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7. (1)

Proof. Let f(z) 13_% and Cp = {z : |2| = R,0 < argz < m}. The equation 1 + 2% = 0 has four roots:

2 = eil gy = e%”, 23 =e %' and z4 = 6_37”, where z; and z, fall in the upper half plane. For R large
enough, we have by Residue Theorem

R
/ f(z)dz + f(z)dz = 2mi(Res(f, z1) + Res(f, z2)).
—R Cr

. i . . —1+14 .o —1—1
5 T z—z1 iz €l 1 iz _ _1+i e b -
It’s easy to see Res(f,z1) = lim,_.., {72he'™ = e L N A and Res(f, z2) = The

So

. =1 1 1 1 T _ 1 1 1
2mi(Res(f, z1) + Res(f, 22)) = 2mi - e V2 -2 (cos —= +sin > =—e V2 (cos —= +sin ) .

42 V2 v2) V2 V2 V2

Meanwhile, for z € Cg, ﬁ < ﬁ — 0 as R — co. By by Jordan’s lemma (Lemma 7.1),

lim f(z)dz=0.
Jm [ 5

Combined, we conclude

o 1 [ 1 _L 1 1
/ Sk 7/ OB g = 3 2mi(Res(f, z1) + Res(f, z2)) = L (cos + sin > .
0

T+24" 7 2) 1+t 2V2 V2 V2
O
(2)
Proof. Let f(z) = (146-%)3 Then similar to our solution for part (1), we have
/o %dl‘ = %/_OO %dm = miRes(f,i) = i - % j—;[e“(z +0) 73] |z = %'
O
3)
Proof. Let f(z) = ﬁ Define Cr = {z : |2| = R,0 < argz < w}. Then for z € Chg, m‘ <

a7 — 0 as R — 0. So by Jordan’s lemma (Lemma 7.1) and Residue Theorem

/ F(2)dz = 2miRes(f, 1+ 1) = 2mi -+ —— = T[(cos1 —sin1) +i(cos 1 + sin 1)].

o [e=(=i)ll,yy €

Com)pare the real and imaginary parts of both sides of the equality, we have ffooo gﬁf;‘;iQ dr = Z(cos1 +
sinl). O

8. (1)
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Proof.
o dx
VP /_oo 2@ —1)(z—2)

\ d dx 1=6 dx 2-0 dx > dx
- o Vm (e — 1)(x2) +/5 (e — 1)z - 2) +/1+5 (e — 1)~ 2) +/2+5 2z - 1)@_2)] '

1 1 1 1
We note o—y7=%y = sz=3) — =1 T 2z* O°

/_6“‘ TR A PR NS E N P
oz —1)(z—2)  NosJ_ n[22-2) -1 2
I | (N +1)? 1. 0(6+2)
- 1\}£nm21n|:N(N+2)] 2 " (5+1)2
1,006+2)
25 (5+1)2

Al_ém:/jé [2@12) ‘xlﬁzﬂ dr=3in [W}

/2—5 dx /H { 1 1 1 } 1 { 5 0% 2 —5}
. - + - |de=:In :
146 T(x—1)(x —2) 146 12z —2) xz-1 2 2 1-6(1—-90)21+9¢
and
/°° dzx _ oy ) LN S )
aps o —1)(x—2) NS 945 2z —2) x—-1 2 v
W 1[N-2 (146> N
N 8% [ 5 (N1)22+6]
2
1. (149) .
2 6(2+9)
Therefore
> _ 53 3(9 _ 2
v.p./ d—x:hmlln 536 +2)(1—-9)°(1+46) 6°(2-90) (1+9) Y
oz —1)(x—2) 5502 (0+1)2 (2—46)0% (1—-08)3(1+6)d6(2+9)
O
2)
Proof. Note sin(z + a)sin(z — a) = —3[cos(2x) — cos(2a)]. So
*sin(x +a)sin(z —a) , l/oo cos(2z) —cos(2a) 1 /OO cos(2x) — cos(2a)
/0 2 — a? do = 2 Jo 2 — a? de = 4. ) 72 — a? da.
Define f(z) = % Let Cp={z:|2|=R,0<argz< R} (R>0),¢(a) ={z:|z—a|=r,0<argz <

7} er(—a) ={z:|z+a|] =70 < argz < R}. Then by Residue Theorem,

/ f(z)dz = 0.
(=R,—a—r)Ucy(—a)U(—a+r,a—r)Uc,(a)U(a+r,R)UCR

Since a is a pole of order 1 for f(z), f(z) can be written as 9= pear a where g(z) is analytic near a and

g(a) #0. So o

0 et s
/CT(CL) f(Z)dZ = /C g(z) dz = /Tr MT@“" da = —i/o g(a+reia)da — —iﬂ-g(a> = —iWRGS(f, CL)

_ {21
-(a) z a re
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as r — 0. Similarly, [ (—a) f(z)dz = —iwRes(f, —a). It’s easy to see limp_, 0 fCR f(z)dz = 0. So by letting

cr

r — 0 and R — oo, we have

o] ein _ eZai e2zi _ e2az’ T
/_OO f(z)dz = im[Res(f,a) + Res(f, —a)] = in I . + i T a . =-2 sin(2a).
So [i° dnleta)sin@=a) g, — T sin(2a). O

(3)
Proof. Define f(z) = %jl;) Let R>r>0,Cr={z:|2|=R,0<argz<7},and C, = {z: |z| =r,0 <
arg z < pi}. Then by Residue Theorem

T R
f(z)dz—i—/c f(z)dz+/ f(z)dz + ; f(z)dz = 2mi[Res(f,4) + Res(f, —7)].

-R

-1 . iz—e'?
= — £ and Res(f, —i) = P TPy

Note Res(f,i) = ;5(;11)

= 152 So Res(f,i) + Res(f, —i) =

z=1 z=—1

-1
—&te— = —cosh 1. Also, we note

) ™ ,L',reia _ eirem
c. 0 r2e2ai

By repeatedly using ’'Hospitale’s rule, we have

R 1o ire'® S xe% ire'™

I ire'® —e lim o — ie’%e 1
im . — =lim —— = —.
r—0 7"2620‘7‘(14*7"2620‘2) r—0 Are20 2
So lim, o [, f(z)dz = —5i. It’s easy to see limp . fCR f(2)dz = 0 by Jordan’s lemma. Therefore, by

letting R — oo and r — 0, we have
/ f(z)dz =2mi- (—coshl) + gz

By comparing the real and imaginary parts of both sides of the equality, we obtain

/°° x—sinxd 1/°° x—sinxd T (1 1

————dr = - ————dr=—-|-—e——|.

o x3(1+ a?) 2 J_o 23(1+ 22) 2\ 2 e

Remark 10. The above result is different from the textbook’s solution. I think I made a calculational mistake
somewhere. Check.

O

(4)
Proof. We shall use the following result: if o # 0 and (8/«) # £1,£2,---, then

T w03 = 1 1
aCOta:;{na—i—ﬁ_na—i—(a—ﬁ)}'

For a proof, see Conway [1], Chapter V, Exercise 2.8 (page 122), or my solution manual for Gong [5], Chapter
3, Exercise 11 (iii) (page 119).
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We have

© LpT _ pqm © ,—(1-p)z _ ,—(1—q)= 00 L,—pY _ p—qY

/ .84\ dr = / € — € dx +/ e - f dy

— oo/ X5 E% 0 et —1 0 1—ev

00 ,—pz _ ,—(1-p)z 00 ,—qz _ o~ (1-q)z

_ / e e do — / e e e

0 1 —e 7 0 1-— e~
_ A [e—pw o e—(l—p)w] Z e~ "y — A [e—qw o e—(l—q)o:] Z e~ " dx
n=0 n=0

_ Z/oo[e_(n-&-p)x _ e—(n—‘,—l—p)x}d:p _ Z/Do[e_(n+q);c _ e—(n-&-l—q)ac]dac
n=0"0 n=0"0

1 1 i 1 1
< \n+p n+1l—p n+q n+1-—gq

n=0

I
hE

I
3 3

cot(pm) — mcot(qm).
O

9. A class of integration problems can be solved by the following general result (Whittaker and Watson [11],
§6.24, Evaluation of integrals of the form fooo r271Q(x)dx).

Theorem 2. Let Q(x) be a rational function of x such that it has no poles on the positive part of the real azis
and x°Q(z) — 0 both when x — 0 and when x — oco. If Y. r denote the sum of the residues of (—2)*~1Q(z)
at all its poles, then

/OO 21 Q(x)dx = 7 csc(an) Z T.

0

Corollary 1. If Q(x) has a number of simple poles on the positive part of the real axis, it may be shown by
indenting the contour that

v.p. /00 2271Q(z)dx = 7 csc(an) Z’I‘ — 7 cot(am) Z T,

0

where 1" is the sum of the residues of 2 *Q(z) at these poles.

(1)

Proof. By the above theorem, we have

oo 1,571 xsfl
/ dx = —m cot(sm)Res (, 1) = mcot(sm).
0 1—2z

2)

Proof. If s =1, then
RO |

0 2

/Oo xdx _1/(’0 dy 1
o (I+a2)?2  2Jy (1+y? 2(1+y)

To calculate the case where s # 1, we choose r and R such that 0 < r < R. Let 1 = {z : r <
|z2| < Ryargz = 0}, 72 = {z : r < |z| < Ryargz = 7}, vg = {#z : |z2| = R,0 < argz < 7}, and
v ={z:]z| =70 <argz < 7}. Define f(z) = (1+ZT)2 Suppose r is sufficiently small and R is sufficiently
large so that all the poles of f(z) are contained in the contour formed by 71, v2, 7, and yg. Then

d 25

f(z)dz = 2miRes(f,i) =270 - ———
[Y1+7R+72’Yr dz (Z + Z)Q

=27 -

z=1

eI = —g(s —1)e2*,
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We have (note —1 < s < 3)
IRCCE
TR

™ (Rew)s o 7TRS+1
/0 7(1 m R262i9)2Re -idf| < 7(1%2 — 12 —0

as R — oo,

T i0\s ) s+1
/ (lj_/reQ)Qw)zTele . ng’ S L — 0
0 ree

asr — 0, and ‘
o) (.’IJGT”)S /OO .’IJS
dz = ———dr =™ ———dx.
[ o= [ e = [ s
Since s # 1, e*™ £ —1. Therefore

/°° x® p _ 2miRes(f,i) 7w 1-—s
o (

x = - = — .
1+ 22)? 1+ es™ 4 cos (%s)
Combining all the cases and regarding the cases where s € Z as limit case of the formula %COi(_,fs), we
z
conclude the integral is evaluated to 7 1=s
COS(ES)

Remark 11. We could have used the general theorem, but we still go to the specific solution so that some
insight can be shed on how the general theorem is proved.

O
(3)

Proof. We choose r and R such that 0 < r < R. Let vy = {2z : 7 < |z] < Ryargz = 0}, 2 = {z : r <
|z| < Ryargz = 21}, yg = {2 : |2|] = R,0 < argz < 27}, and v, = {z : |2| = 7,0 < argz < 27}. Define
flz) = za:ri“. Suppose r is sufficiently small and R is sufficiently large so that all the poles of f(z) are
contained in the contour formed by 71, 72, 7, and yg. Then by Residue Theorem

/ f(2)dz = 2miRes(f, —1) = 2mi(=1)*"tIn(—1) = —2r2el@~ D7,
MHYR=V2—Yr

We note
2rR¥(In R + 2m)

R-1

—0

f(z)dz

TR

[y f(z)dz

r

<

/27r (Reie)afl ln(Rew)
0 1+ Re®

Re . id&‘ <

as R — oo,

<

/27r (rei?)o—1 lgg(reie)Teie -id@’ < 2mr*(lnr + 27) o
0 14 re 1—r

as r — 0, and

/f(z)dz = /R (xezm)a_lln(xe%i)dx
2 r

1+
/R oL@ i (I g 4 27ri) d
= .’I/‘
” 1+z
R a—1 R a—1
= ela-l)m / r_ne lnxdz + 62(6’71)7”'271'1'/ z dx.
. 1+ » 1+z
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It’s not hard to show [ 2 gy = wesc(am). So by letting r — 0 and R — oo, we have

1+:1:
/OO o1 hlxdm _ —2melamDmi g o2 Dmigng . 1 ese(ar)
0 1+x o 1 _ e2(a—1)mi
o 27m%e™ 4 272 ese(a ) €20
- 1 — e2ami
_ g 1 + esc(am)i[cos(am) + i sin(ar)]
- e— QT _ pami
e cos(am)
B sin?(arr)’
8 I' Function
1. (1)
Proof. (2n)!!=(2n)-(2n—2)---2=2".n!=2"T'(n+1).
2)
_ 2n-(2n—1)-(2n—2)---3-2.1 _ (2n)! _ T'(2n+1
Proof. (2n —1)!I = ( 271-(27(1—2)--?2 = év)ﬂ = 2n(1‘(n+1))'
3)
Proof. T'(n+v+1) = (n+v)I'(n+v) =--- = (n+v)(n—1+v) --- (1+v)I'(14v). So (14+v)(2+v)---
I'(n+v+1)
I(v+1) -
(4)
Proof.
[[ee+1) —v+1)] = JJl0-v)0+v+1)
=0 =0
= (I —v) H (Il+v+1)
1=0 1=0
 Tn—v+1) T(n+v+2)
N I'(—v) L(v+1)
_ T'(n+v+2)I(n—-v+1)
sinw?v—&-l)
= fsmm)F(n +uv+2)T'(n—v+1).
™
2. (1)

(n-+0) =

O

Proof. We first assume o € (0,1). Let Cp = {z: || = R,0<argz < 5}, C, = {z: |z| = 1,0 < argz < T},

and assume R > r. Then by Residue Theorem
R _iz iz ir iz iz
/ e—dz—k/ e—dz—k/ 6—dz—k/ e—dz—O
ro 2¢ cr 2% in 2% o, 2
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Then it’s easy to see

0 eirew ) z ) T
/ , a,r,ew .idf < / ’)"17(!67T51n9d0 < Erlfa =0
0

asr — 0, and

eiz
Cr %

as R — oo. So by letting r — 0 and R — oo, we have

oo iz oo i(ix) 0o —x L
/ € dx= / ¢ d(iz)=i- (—i)"/ C dr=ie 3UT(1 - a).
0 0 0

z (iz) x

<

™ . 0
bl ezRe . )
/ Re' . ido
0

i 1—o_—Rsin6 3 l—ap—R2% ;T -R
(Re) 3/0 R ™% d0§/0 R TR "= df = (1—-e"™)—0

2R~

This implies

/ x~ % cosxdx + 2/ x” Ysinxdxr = (sin 57 + i cos §7r) I'(l —a).
0 0

Compare and equal the real and imaginary parts of the two sides, we get fooo r~*sinzdr = T'(1 — a)cos §7
and [~ 2~ coszdr = ['(1 — o) sin $7. For a € (1,2), we note

/ z= @ Veosazdr = 27 @ Vsinz [P + (o — 1)/ x” ¥sinzdr = (o — 1)/ x~ “sinzdx.
0 0 0

So for a € (1,2), [ 2 *sinazdr = 5T(1 — (o — 1)) sin 272w = I'(1 — @) cos . That is, the formula for

Jo~ @™ sinadz is the same when v € (0,1) and o € (1,2). When o = 1, Example 7.9 in the textbook shows
fooc Si%dm = 7, which cannot be obtained by plugging a = 1 into I'(1 — a) cos §. O

(2)

Proof. Let Cr ={z:|2| =R,0<argz <0}, C, ={z: |z| =r,0 <argz < 0} and assume R > r. Then by
Residue Theorem

R T ) .
/ 22 e dy +/ z”‘_le_zdz—i—/ (aceie)"_le_“wd(mew) +/ 227 le 2dz = 0.
r Cr

R c,

Note cos function is positive on (-7, %), we have

/ 22 le7%dz
Cr

On the interval [~7, 2], cosé =sin(é + §) > 2(£+ 3). So

/ 22 le72dz
Cr
a—1

Since § € (=%, %), 14+ 26 > 0. So limg_.o ™

/ 22 le7?dz
Cr

as r — 0. So by letting » — 0 and R — oo, we have

o) S . 0 . o0 . i0
/ {Ea_le_wdl' — / xa—lew(a—l)e—we ewdx — / x(x—lezeae—we dr
0 0 0

0 , 0 0
_ / (Reiﬁ)a—le—Reléd(Reif) < / Ra—le—Rcosf . Rdf :/ Rae_RCOS§d£.
0 0 0

0 a—1
< / Ree % (EF5)g¢ = mh {e‘R - e_R(H%O)} .
- 2
0

{e—R _ e—R(1+%9)} = 0. Also, we note

0
< / ro‘e_RCOSgdﬁ <O0r*—0
0

o0
= ewo‘/ 2 Le™ 89 cos(x sin ) — 4 sin(z sin 0)]dz.
0
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Let I = fooo a® e cos(w sinf)dx and I = fooo Lm0 gin(x sin §)dr. Then we have

') = (cosba + isinba) (I — iII) = (I cos O + I sin Oar) + i(1 sin O — II cos o).

Equating the real and imaginary parts of the terms on both sides of the equation, we can get two equations

of I and II. Solving these two equations gives us

I =T(a)cosal, II =T'(«)sinad.

3. (1)
Proof. Since I'(z 4+ 1) = 2I'(z), we have I"(2 + 1) = T'(2) + 2I'(2). So

IM(z4+1) T(2)+=2I"(2) 1

v 1) = = = -4+ U(2).
(z+1) I'(z+1) 2I(z) z+ ()
(2)
Proof, W 1) = 5oy + (b0 1) = Sy 4 by F B oD == b
14+0(2).
®3)

Proof. By T'(2)T'(1 — 2) = =Z—, we have InT'(2) + InT'(1 — z) = In7 — In(sin 7z). Differentiating both sides,

sinmz?

we have ¥(z) = ¥(1 —2) = == -7, So U(1 — 2) — ¥(2) = mcot 2.
(4)

Proof. By the formula I'(2z) = 22~ 1x—2D(2)['(z + 1, we have

1 1
InT(22) = (22 —1)In2 — §ln7r+lnl‘(z) +InT(z + 5)

Differentiating both sides, we get 2¥(2z) = 2In+W¥(2) + ¥(z + 3).
4. (1)

Proof. Use the substitution z = 2y — 1, we get

-1

(2)
Proof. Let p = H?a and ¢ = 1’7"‘ Then p,g >0,p+¢q =1, and
B B B 1
/ tan® 6df = / sin® @ cos™ 0df = / sin??~! § cos® 1 0df = ~B(p,q) = K X —
o 0 0 2 2sinmqg  2cos G
5. (1)

54

1 1 1
/ (1 —2)P(1 +2)idz = / (2 — 2y)P(2y)? - 2dy = 2r+att / (1 —y)Pyldy = 2P 1 B(p 4+ 1,0+ 1).
0 0
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Proof. We note

- 1 —1/ 1 1 S 1 11 1
Zn(4n2—1) B Z2<2n—1 2n+1) Z(Zn—l 20 2n 2n+1>
n=1 n=1 n=1
S A T
B =2 n—% n n—l—%
By formula (8.27), we conclude Y 7 m = —1[¥(-3)—29(0) + ¥(3)]. By the formula ¥(2z) =

1
$U(z) + 3P(2+ 3) + In2, we get ¥(0) = ¥(3) +2In2 = —v, where v is the Euler constant. This implies

- 1 1
O
(2)
Proof. Using Mathematica command Apart[1/(z" 2 - a~ 2)” 2, we have
- 1 - 1 - 1 i 1 i
. = 9y 1=y |- - - 1
D e N ¥ et e Rl e ey
L[ @ 1 i 1
- _57;0 L_i e v (z+i)2] -1
By formula (8.29¢),
i _r 1 (=1) - [10(—4) — ¥’ (—3) — ¥ (i) — P'(5)] — 1
= (n?+1)? 2 ’
By the formula ¥(z) — ¥(—2) = —% — 7 cot 72, we have ¥(—i) — ¥ (i) = — L — 7 cot(—mi) = i(—1—mcothm).
And by W'(z) + U'(—2) = % — w?csc?(mz), we have W/(i) + U/(—i) = —1 — w2esc?(im) = —1 — %
Therefore
> 1 1 72 s 2
S ——— 1+ —" ) —1="cothm+ —" .
n;w (n2 n 1)2 5 < +mcotmz+ 1+ sinh27r> 5 cothm + 5 sinh? «
O
9 Laplace Transform
9.1 Exercise in the text
9.1.
Proof.
L{ft—7)}= / e PP f(t—T)n(t — T)dt = e T / e PET f(t — T)n(t — 7)dt = e PTF(p).
0 0
- L (720 P
L{f(at)} = | e P flat)dt =~ [ e« f(§)d§ = —F(=).
0 a Jo a ‘a
L{eP (1)} = / e~ =P f(1)dt = F(p — po).
0
O
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9.2.
Proof.

c{/ooo f(t,r)dr} :/OOO ot /OOO f(t,r)drdt:/ooodr/ooo e_ptf(t,f)dt:/ooo Fp, 7)dr

Define g(t) = [~ @dﬁ then ¢'(t) = —@. By Property 4, £{g'(t)} = pL{g(t)}—g(0). So — [;* e‘pt@dt =
pL{g(t)} — [;7 @dT, which implies

15{9(75)}=;/0001_15e t // e dgf(t) // e~ T f(t)dtdg = = /F

[
9.2 Exercise at the end of chapter
1. (1)
Proof. F,(p) = L{t"} = p,’fil for p € C with Rep > 0. To prove this, we work by induction. When n = 0,
this is just Example 9.1. Assume the formula is true for £k = 0,1,--- ,n. Then

> 1 > 1 1)!
Fryp1(p) = L{t"H1} :/ e Pt = > <e_ptt"+1|8° —/ e Pt(n + 1)t"dt> = ”; Fo(p) = (”pntQ).
0 0

Here we have used Rep > 0 to conclude e P'#"+1|5¢ = 0. By induction, we proved our claim. O
(2)
Proof. F(p) = F(fj}fll) for p € C with Rep > 0. Indeed,

1 o 1
— e Pt (pt)%d(pt) = /e_tt(o‘ﬂ)_ldt,
e [ i = o [

E{ta}:/o e Phdt =

where L is the radial straight line that goes from 0 to co, with angle argp. By the extended definition of I'
function (8.3), we have F(p) = F}gfjfll) (Rep > 0). O

3)

Proof. The problem and its solution in the textbook do not match. So we calculate the Laplace transform
both for e* sinwt and e~ sinwt.

o0
tsinwt tsinwtdt = e~ PNt gin opdt = — 2

e / R

where we require Rep > —\, and
oo o0 w
L{Msinwt} = / e PleM sinwtdt = / e~ P Ntgin wtdt = 5
0 0 (P—A)?+w

where we require Rep > A. O

(4)

Proof. By the formula £ { (t)} f F(q)dq, we have

t (o)
L {smw } / L{sinwt}dg = / %dq = arctanz|y = T _ arctan £ = arctan g,
p Ctw w 2 w P

where we require Rep > 0.
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Remark 12. The above result differs from the textbook’s solution, but matches with the result of Mathe-
matica.

O
()

Proof. By applying the formula £ {@} = fpoo F(q)dq twice, we have

L{l_g’swt} _ /mc{l Ctosw’f}d 7// L{1 — coswi}drdg
P

1
/ lim |:1DN lnq—§ln(N2—|—w )+§ln(q2—|—w2) dg
P

— 00

N1
= lim [2 In(¢? + w?) —In q} dq

N—oo p
1/ 2+w2
= hm Nln——F——

N —o0

dq+p1np— fpln(p +w )

w P p+w
= warctan— — =1In -
p

2 D

(6)

Proof. We require p satisfy Rep > 0. Then

z:{/ CO”dT} =" lim ept(/ COSTdT)dt.
t T 5—0 5 t T

By integration-by-parts formula, we have

/oo e—pt </°° COSTdT> dNL 71 |:6pt /Oo COSTdT
5 t T p t T

p

So by the formula [~ F(p)dp = [;° % IO gt we have

* cosT 1 [ cost 1 [
c / dT} - 7/ 1—e Pt —dt:f/ £{(1 = e ") cost}d
{ ¢ T P Jo ( ) ¢ P Jo t Jeostida

1 [ q _
= 7/0 [q2+1—£{e ptcost}}dq

:1/“[ ¢  ptg }d
plo #+1 (+q?2+1

1N 2 1 2
= lim - 5dIn(g +1)—§dln((p+q) +1)
0

oo

1 P +1
1t
2p  (¢+p)P+1

q=0

1
= —In@p*+1).
2pn(p+)

57



Remark 13. If we apply the result of Exercise 9.2, foo Dgr=1 fp q)dq, the calculation is only one

step. The function — foo S=Ldr is called cosine integral functzon

O
2.
Proof.
00 0 (n+1)a 0 a
Fp) = / e =Y / et =Y / P F(4 1 na)dt
0 n=0 v N n=0"0
oo a o 0 n 1 a
= e PLf(t)dt - e P = / e PLf(t)dt e )" = 7/ e PLF(t)dt
oy R
O
3. (1)
Proof. |sinwt| has period Z. Using result of Problem 2, we have
_ 1 R
L{|sinwt|} = ——— e~ P sin wtdt.
1—e"wP 0
By applying integration-by-parts formula twice, we can easily verify
& 14+ e 5P
/ e Plsinwtdt = %
0 Pt w
So ( 0y
l14+ew w w pm
L{|sinwt|} = e N coth%.
O
(2)
Proof. f(t)=1t— [é] has period a. So by Problem 2, we have
t 1 ¢ t 1 e 1 —ap
LAt—al|- :77/ e (t—al- dtzf/ ePhdt = — — 2 ©
a 1—e- J, a 1—e-o J, p? pl—e-
O
4. (1)
Proof. By the formula £{(—t)"f(t)} = [L{f()}]™), we have
R
p(p +a)? p (a+p?® (a+p)? a+p
a2 1 \? 1
= t) — iﬁfl I L*l — e (¢
nt) - % {(Ha) ae () b et
2
= () = S (0% () + a(—He~n(t) — e~ n(t)
2t2
= [1 —e <1+at—|— aQﬂ n(t)
O
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w(w2p+p2)' So £71 {W} = 1(1 - coswt)n(t).

(2)

Proof. We note W =\
(3)
4p—1 1,51 1_1 3
Proof. We note (p2+p§’(4p2_1) =s+33+ 5p-T il Therefore
4p — 1 5 1
P ] } = <1 + et 4 get/z - 3et/2) n(t)

-1
{(p2 +p)(4p* — 1

1 w1/ 1 —wi1/ /
2 = —i[ﬁ{e H = 5[5{6 ' = (L{— coshwt})".

|

(4)
Proof. We note
p? + w? _ 1 n 1
(P?-w?)? 20p-w)? 20p+w)
So by the formula £{(—t)"f(t)} = [L{f(t)}]""), we have
P+ P
L e = (—t)(— coshwt)n(t) = t cosh(wt)n(t).
()
Proof. We note L{1;>,} = efppf. So by the formula E{fg f(s)ds} = @, we have
e P ¢
£ = [ psnyds = (= it - 7).
p 0
(6)
Proof. We have shown in Problem 3(2) that
t 1 a e @
efili -5
p%. So

e~ P

By the formula £{(—t)"f(t)} = [L{f(t)}]"™), we have L{—t} = [L{1}] = —
t e’
=i

E{t}—ﬁ{t—a[a

and
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Proof Denote by F(p) the Laplace transform of y(¢). By the Convolution Theorem (Theorem 9.1), F(p) =

2T —2F(p) 2L - So F(p) = @ ine and
a 1 !
_ -1 _ 1 ot
vit) =~ {@+1P} o~ {<p+1>} ate—
O
(4)
Proof. Denote by F'(p) the Laplace transform of f(t). Then F(p) + 2F(p) z°= = p%. Therefore
9(p? +1) 6 5 4
F(p) = = - + + .
R Y PR} A
Hence
!/
ft)y=6L7" <:1> +5e2 + 4e7t = 5e*! +de”! — Gte "
p+1
O
6. (1)

Proof. By the formula [ F(p)dp = [;° @dt, we have

/OOO e e cos(cx)dx / L{(e7" = e7"") cos(cx) }dp

x
/ { a+p B b+p d
o larpr+E rpr+e|?
1. b2+
—ln ——.
2 a?+c?

Here the Laplace transform inside the integral is obtained by applying integration-by-parts formula twice to
integrals of the form [ ™" cos(cz)dx. O

2)

Proof. By the formula [ F(p)dp = [ @dt and the formula £ {@} = fpoo F(q)dq, we have

1 — cosbx e 1 — cosbx q
/0 p dzx /o L { " } / / L{1 — cos bz }dgdp = / / ( e b2> dqdp

Note
/OO I_o_a dg = lim lnﬂ—llnM —Elnp2+b2
» \q¢ ¢+ TN\ T2 ) T 2 pr
and
0o 2 p? 2 P =0 Jo p*+b>  p?
<2 p|>® T
- 2 _dp=barct { -7,
/0 e D arcanbp=O 5
O
8. (1)
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Proof.

f:(—D” i( 1)n/oo —t—3nt g / —tz =3yt — /Oo et dt
— e e = .
n:03n+1 7—0 0 0 1—|—€_3t
Substituting et for y, we have
S0% - [ i
Ze3n+1 Sy 1wy L Byt 3yt
171 y—3 3 1
0o Ly+ (y—3)?+1 (y—3)2+3
1 1\? =\
= 3 1n(y+1)—§ln y—2) 1 + V/3arctan ﬁQ
2 y=0
1(1 2 + 23 arcta 1)
= — n I n——
3 V3
1 ™
= ~(m2+ T
5 (w2 75)

Proof.

n

_1) oo ot
_ 1) —(4n+1) tdt / 7t 74t nt — / dt.
1 7;)( ) / Z o l+e ¥

n=0

NE

n=0

Substituting et for y, we have

> i

n

/1 / y+v2
o L+y* 22 y—\fy+1 2 +2y+1

_|_
S n[(v2 V2 S n[(vV2y + 1)? V2
= \f{Q 2y —1)? + 1] — arctan( 2y—1)—§ln[( 2y 4+ 1)° + 1] — arctan( 2y—|—1)}
= \f{; 2+\f—arctan(\/i—1)—arctan(\/§—|—1)}
-l
1
— SRmVEE D A

Proof. Suppose p,q € N and g < p, we have (substitute e~ ¥ for Y)

61

1

0



It’s easy to verify (we have proved fol 117 =1 <1n2 + %) in part (1) and note 1fy3 =

In2 p=q=1;
R =3,¢g=1;
01+ydy n2+2  p=3,4q=1

ln2—|—\;rg p=3,q=2.

1 +1
“3pin T 3(y§ty+1))

Therefore
= (-1)" L N 1 1 1
;(3n+1)(3n+2)(3n+3) 7;)(_1) [ 61 " (1+3n) 2+3n]
6 T;) ntl 6 z:% % 3 Z:: g
1 1 ™\ 1 m
2 s
= 3 In2— Wik
O
10 4 Function
1. Let () be any test function that satisfies certain regularity conditions.
(1)
Proof. [ ¢()d(—x)dz = [7_ o(—x)d(z)dz = ¢(0) = [7_@(x)é(x)dx. So 6(—z) = §(x). O
(2)
Proof. [ ¢(x)-ad(x)dz = [7_(ve(z))d(z)dz = 0-¢(0) = 0. So zd(z) = 0. O
3)
Proof. [ (x) - f(x)d(x)dx = ¢(0)f(0) = [7 w(x) - f(0)d(z)dz. So f(z)d(z) = f(0)d(x). O
(4)
Proof.
| et ad@ae = [ wele)s @) = s - [ el
= —¢(0)= —/fo o(x)d(z)dx
So zd'(x) = —d(x). O
(5)
Proof. [, p()6(az)ds = [, ¢(y/a)s(y) 2 = 1p(0). So (az) = Lé(z). 0
(6)
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Proof.

oo 0 0o
3 f(x)o(2? — a®)dx = /_ f(x)é(x2—a2)dm+/o f(x)o(x? — a®)dx
= /_a f(—vy+a2)5(y)d(—vy+a2)+/_OO2 F(Wy+a?)d(y)dvy + a?
= [T sy [T IV 5,
—a2 2y/y+a —a2 24\/y+a
= o lf(a) + f(a)],

where the last equality is due to the fact 0 € (—a?, 00). Therefore, §(z? — a?) = 3-[0(z — a) + 6(z +a)]. O
Remark 14. More generally, we have the following useful result

Proposition 1. Suppose p(x) is a continuously differentiable function and the equation p(x) = 0 has finitely
many roots (xg)n_, with ¢(xy) # 0. Then

N 0(x — xg)
Op(x)] = AL
[Pl = 2 )
Proof. For each k € {1,---, N}, we prove d(¢(x)) is Crd(x — ) for some constant Cj, in a neighborhood of
2. Indeed, we can find € > 0 such that 1, -+ ,2g_1,Zk41, - ;2N & [2p —&, 2 +¢]. Clearly §(p(zx)) = .
Furthermore, we have by the change-of-variable formula (y := ¢(x))

Tte Nde — S(y)dy 1 1
/ dp@)de = /WM),@(W] e 1) - P @) @)

So in a sufficiently small neighborhood of zy, 6(¢p(z)) = 2&=2k). O

2. (1)

Proof. The general solution of the homogeneous equation [% - kz} g(z;t) =0 (z > t)is c1 (t)eFTteq(t)e 2.
By the continuity property of g(x;t) at =t (formula (10.36a) and formula (10.36b)), we have

c1(t)ert + co(t)e ™ =0
kei(t)ekt — keo(t)e ™ = 1.

Solving this equation, we get ¢q(t) = %,:t and co(t) = f%. Therefore, combining with formula (10.39), we
have

g(x;t) = [e1(t)eR™ + co(t)e Fon(z — t) = % sinh k(z — t)n(z —t).

Remark 15. The above result differs from the answer of the textbook. But according to the textbook’s answer
to Exercise Problem 3(2) of this chapter, we see the correct answer is indeed + sinh k(z — t)n(z — t).

O
(2)
d2

Proof. By Exercise Problem 2(1) of Chapter 6, the general solution of the homogenous equation [W — xQ} g(z;t) =
d(z—1t) (x >1)is cr(t)wr(z) + c2(t)we(x) where

o I(3/4) x\4n = I(5/4) x\ 4nt1
wi(®) *;nlr(n+3/4) (5)  w2(@) *;nlr(nm/z;) (5) '
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By the continuity property of g(x;t) at =t (formula (10.36a) and formula (10.36b)), we have

wi(z) w2 (w)
wi(z) wy(w)

ca(t) = 2wy (t). Therefore, combining with formula (10.39), we have

_ 1

Using the hint that = 3,

we can solve the above equations to get c¢;1(t) = —2ws(t) and

g(x;t) = 2wz (x)w: (t) — wi (2)w ()]n(x — 1),

Remark 16. To see why the hint is true, we note [wy (z)wh(x) —w] (x)wa ()] = wy (x)wh () —wy (z)we(x) =
/
w ()

wi(z) - 22wa(x) — 22wy (2)we(z) = 0. Therefore, wy(x)w const = w1 (0)wh(0) —
wi(0)ws(0) =1/2.

’Q
\
g
_~
8
g
V)
—
8
~—
Il

O
(3)

Proof. By Exercise Problem 2(4) of Chapter 6, the homogenous equation

2

(1+x+=x )%—1—2(1—1—23:)%4—2] (x;t) =0

has solution ¢ (t)wq(x) + c2(t)wa(z), where

1 x

o) = o @ =

To use the continuity conditions of the Green’s function at x = ¢, we note

2 2

2(1+2:v)di+2 glx;t) = d—Q[(l—i—x—i-xQ)g(x;t)}.

dx

[(1+x+x)ddx

dglwit) = 0 and integrating both sides of the equation, we have
<t

So by the condition

Lt gl =1,
Le. (14 2t)[er(t)wi(t) + ca(t)wa(t)] + (1 4+t + t)[er(t)wi(t) + ca(t)w
g(x;t) at =t and g(x;t)|z<: = 0, we have ¢1 (t)w1(t) + ca(t)wa(t) =
equations

5(t)] = 1. And by the continuity of
0. Combined, we have the system of

2
1 (twi (t) + c2(wh(t) = 1757

{cl(t)wl(t) +ea()wa(t) = 0

Then

wy(t) wa(t) - _ 1
w! (1) 0l Then it’s easy to see D(t) = (===l

- 8 ] o]
So g(x;t) = Fib=n(z — ). O
3. (1)
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Proof. By Example 10.5, the solution to the homogeneous equation

Lo 4 K2g(ait) = 6w — 1), 2,t >0
g(0s0) =0, “z0| o,
is g(x;t) = ¢ sink(z — t)n(x — t). By formula (10.60),

vie) = [ atwso) - [aS0 By

X

t=0

sink(z —t)f(t)dt — [-Acosk(z —t) — g sink(z — t)]i=0

| =

Il
S~

8

1 B
= %/ sink(a:ft)f(t)dtJrAcoskarEsinkas.
0

O
(2)
Proof. By Exercise Problem 2(1) of this chapter, the homogeneous equation
7dzgg§;t) — k2g(z;t) = §(x — t), z,t >0
g(0;) =0, 4B~
=0
has solution g(z;t) = 1 sinhk(z — t)n(z — t). By formula (10.60), we have
* dg(x;t B 1 [*
y(x) = / glz; ) f(t)dt — |A glzit) _ Bg(w;t)] = Acoshkx 4+ — sinhkx + — / sinh k(xz — ) f(t)dt.
0 dt ™0 k k Jo
O
(3)
Proof. By Exercise Problem 2(2) of this chapter, the Green’s function is
9(x;t) = 2w (x)w: (t) — wi(z)wa (t)]n(x — 1),
00 r(3/4 z\4n 00 '(5/4 2\4n+1
where U}l(l') = ano m (5) and U}Q(Z') = ano m (5) . Define
_ wi(t)  wa(t) _ wi(t)  wa(t)
Dita) = [0 20| paten = [ )
Then g(z;t) = 2D; (¢, z)n(x —t) and by formula (10.60)
* dg(x;t
y(z) = / g(@; 1) f(t)dt — pruiCig Byg(x;t)
0 dt t=0
= 2/ Di(t,z) f(t)dt — A - 2[wa(x)w] (0) — wy (x)wh(0)] + B - 2[wa(x)w; (0) — w1 (z)wa(0)]
0
x
. / Di(t, ) f(£)dt + 2ADs(x,0) + 2B D1 (0, 2).
0
Remark 17. This result differs from the answer of the textbook. Check.
O

4. (1)
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Proof. By Exercise Problem 2(1) of this chapter, the general solution to the equation
d? 2
lez —k } g(z;t) =0(xz — 1)
is +sinhk(z — t)n(z — t) + C(t)e"” + D(t)e**. Plugging this formula into the boundary conditions, we get

C(t)+D(t) =0
$sinh k(1 —t) + C(t)eF + D(t)e " = 0.

Solving it gives us D(t) = ﬁ% and C(t) = —i% Therefore
1 inh k(1 —¢
glx;t) = Z sinhk(z — t)n(x —t) — % sinh kz.

(2)

Proof. By Exercise Problem 2(2) of this chapter, the general solution to the equation

dx?

{CF - x2] glast) = 6(x — 1)

is 2[wa(x)wy (t) — wr (z)wa(t)|n(x — t) + C(t)wi(x) + D(t)wa(t), where

o I(3/4) x\4n = I(5/4) x\4nt1
wi(e) =) nIT(n + 3/4) (5)  wa(@) =) nIT(n + 5/4) (5) '

n=0 n=0

Plugging this formula into the boundary conditions, we get (note w;(0) =1 and wy(0) = 0)

{C(t) =0
2w (1)wy () — wy (L)ws ()] + C(t)w: (1) + D(t)ws(1) = 0.

Solving it gives us C(¢t) = 0 and D(¢) = —%. So

 2ws(z)

() Dy (t,1) + 2D (t, x)n(x — t),

g(z;t) =

w1 (t) wa (t)

where D4 (t,z) = ’wl(x) wa ()|’

Remark 18. The above result differs from the answer in the textbook. But according to the textbook’s answer
to Exercise Problem 5(3), the above result is the correct one.

O
(3)

Proof. By Exercise Problem 2(3) of this chapter, the general solution to the quation
2

d d
(1+x+x2)@ +2(1 4 2) — + 2| g(w;t) = d(z — )

is ﬁn(ag —t)+ 1+C;(4t»)m2 + IJZ(PIQ x. Plugging this formula into the boundary conditions, we get C(t) = 0

and D(t) = —(I —t)/l. So

_ ozt (I—t)x

@) - Tz )



Remark 19. The textbook’s answer is wrong, as seen easily by checking the boundary condition at v = 1.

O
5. (1)
Proof. By Example 10.7, the solution to the equation
(LR gleit) = 0@ —1) (0<wt<1)
9(0;t) =0, g(1;¢) =0
is g(x;t) = £ sink(z — t)n(z —t) — %Sinslir(llkft) sin kz. By formula (10.67), we have
1
k(1—t E(1—t
y(z) = /0 g(z; ) f(t)dt + B % sin kx . —A { cosk(xz —t) + % sin kx -
1 /[ sinkz [* sin kx sin k(1 — )
= - ink(x—t)f(t)dt — ink(1—t)f(t)dt+ B A
k:/o sink(z —1)f(?) k:sink/o sin ( ) (t)dt + sin k + sin k
O
(2)
Proof. By Exercise Problem 4(1) of this chapter, the solution to the equation
[% - k;Q] glz;t)y=0(x—t) (0<z,t<1l,k>0)
9(0;t) =0, g(1,t) = 0.
is g(x;t) = ¢ sinhk(z — t)n(z —t) — % sinh kz. Using formula (10.6), we have
1 [® sinhkz ! cosh k(1 —t)
= = inhk(z —t)f(t)dt — ———— inh k(1 —¢)f(t)dt + B——————=sinhk
y(z) z /0 sinh k(z — t) f(¢) P /0 sinh &( ) f(t)dt + ahp Snhkz .
hi(l—t¢
—A |coshk(z —1t) + M sinh kx
sinh k 0
1 [ sinhkz [* sinh kx sinhk(z + 1)
= = inh k(z —t) f(¢)dt — inh k(1 —1t)f(t)dt+ B —A .
k:/o sinh k(e — 1) (1) kzsinhk/o sinh k(1 =) f(t)dt + B0 sinh k
Remark 20. The above result differs from the textbook’s answer. Check.
O

3)

Proof. The solution to the equation

0(x—1t) (0O<azt<l)
0

[dd—; - xg} g(z;t)

{g(O;t) =0, g(151)
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is g(xz;t) = 2522(("”))D (t,1) + 2D1(t, z)n(x — t). By formula (10.67)

ve) = [ s s —dg‘d? O 4 dg(d? 9
= / Dy (t,z)f(t)dt — (t,1)f(t)dt — B 211)22((1))[ 1(Dwa(1) — wh (1w (1)]
A { )) (0w (1) — wh(0)wn (1)] + 2fus (O)uwa () — w;<o>w1<x>}}
B B 211/2 2w2( ) /
- / Di(t,z) f(t)dt / Di(t, ) (0dt + B2 D1, )

]

Remark 21. The above result differs from the textbook’s answer. Check.

11 Complex Functions in Mathematica

There are no exercise problems for this chapter.

12 Equations of Mathematical Physics

1.

Proof. For the points inside the bar, we can apply the partial differential equation (12.10). For the boundary
conditions, the end where z = 0 is fixed, so u(0,t) = 0; the end where x = [ has no external stress, so by
Hooke’s law (formula (12.9)) %‘ %5 0 (see formula (12.36)). For the initial conditions, the initial

velocity of every point on the bar is 0, so W’ = 0; at time 0, Hooke’s law implies E@ =P= §7
t=0

SO Uli—g = ELS:C Combined, we have

9?2 29?
oz — 0 gz =0,
ou

Ulz=0 = 0, 92|zt =0,
Uuli—o = £, % o =0
O
2.
Proof. Let D be the rate of diffusion. Then from formula (12.20), we conclude
37: =D u+au.
O
3.
Proof. By Fourier’s law (formula (12.15)), we have
Gul  _ @ vl
0x|,_q k’ Ox|,_, k
O
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4.

Proof. We choose polar coordinate and place the origin of the coordinate at the center of the ball, with axis
pointing to the sun. Then by formula (12.41), the boundary conditions are

{(M H ] H %0059, 0<6< 7,

R + —U = —uo =

or  k ],_, k 0, F<0<m,

where H is the proportional constant in Newton’s law of cooling. O

13 General Solutions of Linear PDE

13.1 Exercise in the text

13.1.

Proof. Suppose the solution has the form u(z,y) = g(y)¢(y + az). Then

(Dz — aDy = B)u= g(y)(Dz — aDy)¢(y + ax) + ¢(y + az)(—aDy — B)g(y).

Since (Dy — aDy)¢(y + ax) = 0, we obtain the ODE for ¢(y): (oD, + 8)g(y) = 0, which has a solution
_8 _8
9(y) = e"a¥. Sou(x,y) = e” 2 d(y + ax). m

13.2 [Exercise at the end of chapter
1. (1)

Proof. The auxiliary equation is a? — 2a. — 3 = 0, which has roots 3 and —1. So the general solution has the
form of f(3x +y) + g(x — y), where f and g are two independent C? (twice differentiable) functions. O

(2)

Proof. The auxiliary equation is a® — 2a+2 = 0, which has roots 144. So the general solution has the form
of f(x +y+iz)+ g(x +y —ix), where f and g are two independent C? functions. O

3)

Proof. The auxiliary equation is a* — a = 0. So the general solution has the form of f(y) + g(y + =), where
f and g are two independent C? functions. O

(4)

Proof. We consider the PDE for ru(t,r). The original PDE gives us Diu = %(ZT‘DTU + r2D?u), which is
equivalent to

2

[D? — 2D?|(ru) = rD?u — 2¢*Dyu — ¢*rD?u = 0.

So the auxiliary equation for ru(t,r) is a® — ¢* = 0, which has roots &=c. So ru(t,r) has the general form of
f(r+ct) + g(r — ct). Therefore u(t,r) has the general form of L[f(r + ct) + g(r — ct)]. O

(5)
Proof. The auxiliary equation is (a? — b?)a? + 2aa + 1 = 0, which has roots —%% and —ﬁ. So the general
solution has the form of f (t - ﬁx) +g (t - a%rbx), or equivalently, f(z — (a+b)t)+g(z — (a —b)t), where

f and g are two independent C? functions. O

(6)
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Proof. The auxiliary equation is a* — 1 = 0, which has roots +i, £1. So the general solution has the form

of p1(y + ) + da(y — x) + ¢d3(y + i) + Paly — ix). O
2. (1)
Proof. The general solution to the homogeneous equation

Fu o

ox  Oy?

has the form of f(x + iy) + g(z — iy) where f and g are linearly independent (formula (13.11)). To find a
special solution, we note

n
1 2 1 - n D?%
Dy T = [Z(‘” (p

n=0

8
=

1 23y
2 _ 2 _
(2% +ay) = =5 (2" +2y) = +T'

x

1

N}

So the general solution to the original equation has the form of

. . 2y
f(:c+zy)+g(a:—zy)—|—ﬁ—|—?.
O
(2)
Proof. The general solution to the homogeneous equation
Pu Pu 0
or Oy

has the form of f(x + y) + g(x — y) where f and g are linearly independent (formula (13.11)). To find a
special solution, we note

1 1 | Di " 1 3 3
1736—17;(3’9_5“)_172[2(179%) ](xy—x)—Dz(xy—:c)— 6

T n=0 T

|
<

So the general solution to the original equation has the form of

fla+y)+gl@—y)+ éx:‘(y— 1).

Remark 22. The textbook’s answer is f(x+y)+g(x—y)+ %333 (y+1), which can be easily verified as wrong.
O

3)
Proof. The auxiliary equation of the homogeneous equation
0%u Pu  0%u
- 22— + —
O0x? 0xdy  Oy?

is a? —2a+1 = 0. So the general solution to the homogeneous equation has the form of x¢(z+vy)+(z+7v),
where ¢ and 1 are linearly independent functions. To find a special solution, note

2
1 2 1| Dy\" 2 D, ’ 2
T [n=0 z z
1 2D, 1 2 R T VR
= —(14+ =) (a? = —(2? —1)==+ 24+
D§<+Dm>(x Y= p@ iyt 5 )=t 5ty
So the general solution to the original equation has the form of
2 2%y
x¢(m+y)+w(x+y)+ﬁ+?+7.
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Remark 23. The above result is different from the textbook’s answer. Check.

3. (1)
Proof. Using the transformation x = ¢! and y = e®, we have

$2@ — 9% 0%u + 2@ + m@ + @
0x? yamay 4 Oy? oz yay
= Dy(Dy—1)—-2D;Ds;+ Ds(Ds — 1)+ D¢ + D,

= (Dy—D,)>.

So the general solution has the form
u(w,y) = t6(t + ) + ¥t + 5) = mag(nz + Iny) + Y(Ine +Iny) = Iz - flzy) + glzy),
where ¢ and v (or equivalently, f and g) are linearly independent functions. O
(2)

Proof. Tt’s easy to see sin(xy) is a special solution to the inhomogeneous equation and f(x +vy) + g(x —y) is
the generals solution to the corresponding homogeneous equation, where f and g are linearly independent
functions. So the general solution to the inhomogeneous equation is f(z + y) + g(z — y) + sin(xy). O

4.

Proof. The key is to note that

2
2l0-92]-56-77 5
1

B ou 2, 0%u 1 5 0%u
S 1 92
- {glt- ol - gl - o)
Define v(x,t) = (I — x)u(x,t), we can get a new system of equations
;—;v(x,t) — a%g—;v(x,t) =0
vli=o = (L = 2)d(), 57|,y = (Il —2)¥(2).
By Example 13.9, we conclude
1 1 z+at
v(z,t) = 5[(1 —z+at)p(x —at) + (I —x — at)p(x + at)] + %/ (I —&)p(&)dE.
r—at

So
1 1 x+at
u(z,t) = m[(l —z+at)p(x —at) + (I — x — at)p(z + at)] + m /7 t (I —&)o(&)de.

Remark 24. The above result is different from the textbook’s answer. Check.
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14 Separation of Variables

14.1 Exercise in the text

14.1.

Proof. 1f we solve for T(t) directly, we can conclude the general solution to the equation 7" (t) + Aa*T'(t) = 0
is T(t) = Asin(v/Aat) + B cos(v/Aat). Boundary conditions give A = B = 0. So T(t) = 0.
If we apply theory of ordinary differential equations, we note by Theorem 6.1,

T (t) + Aa®T(t) = 0
T(0) =0, T'(0) =0

has a unique solution in (0, 00), which has to be 0. O
14.2.

Proof. Assume u is C?, then

%—&%:0, 0<z<l,t>0,
Ou(x,t o ou(z,t _
éx ) z:O_O’ (’gar )r:l_o’ tZO’
U|t:0:¢(aj)a %‘tzozdj(x)a 0<z<I
implies
.0 . Ou(x,t) . Ou(x,t)
/ _ . _ Y / _ — _ I
0/(0) = Jim o= (ulmo) = fimy TG0 =0, g/0) = lim o) = fim TG0 <0,
and
0 ([ Ou 0 ( Ou 0 [ Ou 0 ( Ou
"0) = lim — [ — =lim — [ — = — =lim — [ — =0.
Vo) J%m(amﬂ) ﬂhﬁQnL> 0¢()z%&(3hm>tﬁwxézm> 0

We should extend ¢(x) and () in such a way that the extended functions are at least C1. So

¢ 0<a<l, W), o<z<l,
and then extend ®(x) and ¥(z) to (—o0,00) as periodic functions with period 21. O
14.3.

Proof. Assume u is C?, then similar to previous exercise problem,

%—aQ%:O, 0<z<I,t>0,
u(r,t)lomo =0, 20| =0, £20,
u|t:() = (b(x)v %Lf:o :¢ (E), 0 <z Sl

implies

$(0) =0, ¢'(1) = 0, ¥(0) =0, ¥'(I) =
We should extend ¢(z) and (x) in such a way that the extended functions are at least C''. Therefore, we
should first extend ¢(z) as

)o@l —x), 1<z <2
M@_{M@, 0<a <l

then we extend ®(z) to [—2[, 2] so that it becomes an odd function; finally, we extend ®(x) to (—o0, c0) as
a periodic function with period 4l. ¥ (z) should be extended similarly. O
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14.4.

Proof. If we take choice (1), then the general solution to equation (14.21) will have the form

= 2n +1 2n +1 . 2n+1
u(x,y):Z{AneXp{ 5 wy}—i—Bnexp{— 5 Wy}] sin ——7z.

n=0

Plug this formula into (14.21c), we get

{ZZO_O(An + B,)sin 2”“71'96 = f(x)

ZZOZO 275:1 ™ [An exp { 27;;1 TI'b} B, exp {—

2g+17r:c =0.
a

] sin

Using the orthogonality of the system (sin 23+72)" “over [0,a], we have

A,+B,=2 foa x) sin 2’;+17rxdx
Ay exp{ 2"+17rb} B exp {— 22 7rb} = 0.

Solving the equations gives us

2 [ f( exp { -2t 7p} 2 (O f(2)sin 22 rade

1—|—exp{ Q”lewb} VT 1+ exp {— 228}

B, =4

The result is the same as choosing the following form for Y, (y):

n+ 1

2n+1 2
Y, (y) = C,, sinh nt 7wy + D, cosh TY.
But clearly choice (1) makes the result look messier.

If we take choice (2), the general solution to equation (14.21) will have the form

- 2n+1 2n+1 2n+1
u(x,y) = Z {An sinh n2: my + By, cosh nQZ (b —y)| sin nQZ .
n=0

Plug this formula into (14.21¢), we get

{ZZO_O B, cosh 22 rhsin 22y = f ()

S A 2"Jr17rcosh 2”+17Tbsm bl g = 0.

n=0 2a

2 [ f(z)sin 2t rgpde
cosh %ﬂ'b

So A, =0and B, = . Thus, choice (2) makes it easier to solve for A,, and B,,. O

14.5.

Proof. Note in equation (14.21), the roles of 2 and y are symmetric, so the problem can be reduced to solving
the following two problems:

gzg+ay =0, 0<z<al0<y<b,
u|w0 ) Bz 207 Ofyfba

o = 9(0), 1| =vi@), 0<z<a

and ) X
SE =0, 0<z<a0<y<b,
Ulamo = f(y), G4|,_, =9), 0<y<b,
uly=o =0, g—Z‘ =0, 0<z<a.

=b

These two problems can be solved via separation of variables. Then the solution to the original problem is
the sum of the respective solutions to the two new problems. O
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14.6.

Proof. Suppose v(z,t) is a special solution to the problem

%—az%zf(x,t), O<z<lt>0
u‘z:() :O7 u|w:l = O, tZ 0.

Let w(z,t) = X (z)T'(t) be a solution to the homogeneous problem

2 2
o4 —a% 4 =0, O<z<lt>0
U|g=0 = 0, u|z:g =0, t>0.

Then w(z, t) must have the form of >, (Cy, sin “Fat + D,, cos “Eat) sin 2T x. Let u(z,t) = v(z,t)+w(z, ),
then the initial value condition becomes

{Z:o_l D, sin 2z = —v(z,0) + o(x)

oo NTA 3y N 0 781)(93’75)
Domeq Cn M sin By = — =222

+ ().

t=0

Using the orthogonality of the eigenfunctions, we have

2 Ol <8v(x,t)

Cn=a ot

2

! nw
7 /0 [—v(z,0) + ¢(z)] sin T:rdx.

+ 1/)(37)) sin Txdx, D, =
t=0 l

14.7.

Proof. Yes, we can. See §14.6 for detailed discussion. Once we obtain a solution u;(x,t) to equation (14.81)
and a solution ug(z,t) to equation (14.49), u(z,t) = wuy(x,t) + uz(x,t) will be a solution to the problem
under consideration. O

14.8.

Proof. No, because we want {X,,(z)} to be complete. The boundary condition (14.49b) or (14.74) guarantees
the self-adjointness of the differential operator associated with the eigenvalue problem satisfied by X, (z),
which implies the completeness of {X,,(z)}. See Chapter 18, the discussion after Example 18.6 as well as

Proposition 4. O
14.9.
P _ _(-=)? z?

roof. v(x,t) = —5r—u(t) + Sv(t). O
14.10.

_ 2

Proof. v(z,t) = SEpu(t) + L (). O
14.11.

Proof. Step 1. Find a function v(z, t) satisfying the boundary value condition
U(l‘,t)|w:0 = M(t)’ U(x’t”w:l = V(t)'

Step 2. Find a solution w(z,t) to the problem

2? 2? ol 2?
0% - %% = f(z.0) - |53 - 253, 0<z<lt>0
wla=0 = 0, wle= =0, t>0

wheo = 6(z) — 0(z,0), 2], =v(@) - 22| | 0<w<l
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This step can be further divided into the following sub-steps.
Step 2.1. Solve the following eigenvalue problem

X"(z)+AX(z) =0
X(0)=0, X(I) =0,

and obtain a system of orthogonal eigenfunctions {X,,(z)}nZ; = {sin Fa}52 ;.
Step 2.2. Expand w(z,t) and f(z,t) — [61&2 a? ggﬂ”} according to eigenfunctions { X, (z)}:

w(z,t) =37 Tn(t) X (z)
flat) = |5 - 25| = X0, gn(0)Xa (@),

where g, (t) = 2 fo { [% — aQ%} } sin #Fxdz. Plug these formulas back into the partial differen-

tial equatlon for w(z, t).
o0
S0+ v - S

Using orthogonality of {X,(z)}2;, we conclude T/ (t) + A\,a®T},(t) = gn(t). Note w(z,t) automatically
satisfies the boundary conditions as X,,(0) = X, (1) = 0. To make it further satisfy the initial value condition,

we need to expand ¢(z) — v(z,0) and ¥ (z) — w
t=0

according to eigenfunctions { X, (z)}:

2,0) = Y02, 40 X, (0)
v(a) = ZHD| =30 b Xa(a)

—
=
8
SN—
I
<
—

where a,, = %fol[(b(x) — v(x,0)]sin 2Lzdz and b, = 2 Ol [z/J(a:) - W‘t: } sin 2T xdx. Combined, we can

have an equation for T,,(¢):

T,.(0) = ay, T)(0)

{Tm + A@2T (1) = gut)
b,,.

Once we find T5,(t), the solution to the original PDE can be written as u(x,t) = v(z,t)+ >~ T, (t)sin 2 x.
Step 2.3. There are many methods to solve the equation

{T;;(t) + Aa2Ty (t)

gn(t)
T, (0) = an, T,,(0) = by.

We apply method of Green’s function to refresh our memory of Chapter 10. The Green’s function corre-
sponding to the above initial value problem is

%g(t; 5) + Ana?g(t;s) = 6(t —s), t, s >0
9(t:)lees =0, | =0,
1 £€>0

. By th
0 t<o T

So g(x;t) has the general form [A(s) sin v/ Ayat + B(s) cos v/ Anat]n(t — s) where n(§) = {

T
% =1, we have

s—

continuity of g(¢;s) at t = s and

A(s)sin/Anas + B(s) cos v Anas =0
VAnalA(s) cos vV Azas — B(s)sin v Anas] = 1,
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which implies

_cosV/Ayas

siny/Apas
A ="x PP =T

B(s) = RV, wa

So

1
g(t; s) oW [cos v/ Anassin\/Apat — sin v/ Ajas cos v/ Apat]n(t — s)
1
= oW sin v/ Anpa(t — s)n(t — s).

Therefore by formula (10.60) (recall A, = (%)2)

t dg(t; s
10 = [ a9 6ds— o W ()]
s=0
l toonn nmw bl . nm
= — [ sin—a(t — $)gn(s)ds + a, cos —at + —— sin —at.
nma Jq l l nma l

s

Step 3. u(z,t) = v(z,t) + > .7, Tn(t) sin 2Lz is the solution to the original problem, where

ot byl
T, (t) = vma /. sin nl—?ra(t — 8)gn(8)ds + a, cos ?at + i sin nl—ﬂat

with a,, = %fol [p(z) — v(x,0)]sin 2L adx, b, = %fol {1/)(:17) - w ] sin 2T xdz, and

2 [ v ,0% . nw
gn(t) = 7/0 {f(x,t) - {(%2 —a axz]}bm Txdx.

14.2 Exercise at the end of chapter
1.
Proof. The partial differential equation under consideration is

2 2
o%u a28u 0,

ot? oz
_ ou _
u|:E:O - 07 oz lp=1 — 07
_ F ou —
uli=0 = g3, 3t lizo = 0-

The corresponding eigenvalue problem is

The solution is X, (z) = sin 257z (n > 0) with eigenvalue A, = (%)2 Expand £5z according to

{ X, (2)}52,, we have the coefficient

an = /l £ psin 2L da 8L ()"
n = 7 T = .
I J, ES 2 ESw2 (2n + 1)2

So T, (t) satisfies the ODE

{T:ﬂt) AT (1) =

0
T,(0) = an, T2,(0) = 0.
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Therefore T, (t) = a, cos v/ Anat and

= 8FI = (-1 . 2n+1 2n+1
u(z,t) = E T (t) Xy (z) = 52 CEESIE Sin ——7—mx cos — at.
n=1 n=0

2.

Proof. The partial differential equation to be solved is
%—GQ%:Q O<z<l,t>0
u|:c:0 = Ugp=] = 07 t > Oa
uli—o = Fliococey + (= 0)l{e<a<ty, Gflimg =0, 0<z <t

This is a special case of Exercise Problem 14.11, with f(x,t) = 0, u(t) = v(¢t) = 0, ¥(z) = 0, and ¢(x) =

by 0<z<c . . .

° . Applying the formula we obtained for Exercise Problem 14.11, we have u(z,t) =

=l—z) c<x <l
>ono i an cos Brat sin 2Tz, where

9 l 2 [°h 2 ! h 2hi?

an = 7/0 ¢(z) sin nl—ﬂa:dx = 7/0 E:Csin nl—ﬂxdm + j/c T C(l — z)sin nl—?ra:das = 0= o)) sin %mr.
Therefore u(z,t) = % S oo~z sin “Eccos “Eat sin . O
3.

Proof. The partial differential equation under consideration is
ou %u _
ot Foge =0
U|;c=0 = U|3c=l =0
u|t:0 = b#
Plug T'(¢) X (z) into the differential equation, we get T"(¢)X (t) — T'(t) X" (¢t) = 0. So the eigenvalue problem
associated with this PDE is
X"x)+AX(z)=0
X(0)=X(1)=0.

If A\=0, X =0. If A # 0, the solution must have the form X, (z) = sinv/A,x with A, = (%)2 (n € N).
Suppose u(z,t) = > 07 T, (t) X, (z). Then

S0 [T0(E) + AT (8)) X () = 0
Yooty Tn(0) X () = b2

Using orthogonality of {X,, ()}, we conclude

T! (t) + ATy (t) =0
T,.(0) = an,

where

& fl z(l — )X, (x)dz 4b 0 if n is even
" Oflxz( )d s+ ()] =
o X2(x)dx

n?gg if n is odd.
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Therefore,

To(t) =

{O if n is even

n?ig e~ Ankt i s odd.

Finally, we can conclude

8h 1 _(2mt13\2 . 2n+41
u($7t) = ;Zme ( t ) ®*sin ] .
n=1

5.

Proof. Plug u(x,y) = X(x)Y (y) into the differential equation, we get );/(gf)) = —%. So the associated

eigenvalue problem for Y (y) is

Y(y) + AY (y) =0
Y'(0) = Y'(b) =0

Therefore nontrivial solution is Y,, (y) = cos /A,y with A, = ("—;)2 (n € N). Suppose u(z,y) = > o Xn(2)Yn(y),

we have
{Zf_l[Xé'(x) - Aan(x)]Yn(y) =0
S Xn(0)Ya(y) = w0, 202, Xal@)Yaly) = uo [3(1)" = 2(1)"].

Using the orthogonality of {Y;,(y)}22;, we have

{Xﬁ(w) — A X(@)

Xn(0) = an, Xn(a) = by,
where
b 2 3
fob ug Yy, (y)dy fo Uo {3 (%) -2 (%) ] Yo (y)dy 0 if n is even
an = b = 07 bn = b - 4811.0 . .
Jo Y2 (y)dy Jo Y2 (y)dy ~ ot if n is odd.
Solving the ODE for X, (z), we get
Xo(z) = 0 if n is even
T - s sinh 22 if s odd.
Combined, we conclude
(z.5) = 48up 1 sinh2%Hre  2p 41
WY =77 “= (2n+1)* sinh ntlrg b Y

6.

Proof. We apply the formula developed in Exercise Problem 14.11. In this problem’s context, we have
o(x) = P(x) =0, v(z,t) =0, and f(z,t) =bx(l —z). So

2 ! nmw 4b12 0 if n is even
ty = = | bx(l—2a)sin —azdr = )" 1] =
9n(t) 1/0 2l = @)sin Frade = 2oss (=1 + 1] { 852 i 1 is odd.

(nm)?
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This implies

s ~ Abl? (1) 4] = 4bl

—1)"t 4 1] (1 — cos nl—wat) .

ezl
brat).

Therefore

nw 8bl* 1 _2n+1 2n
Z T, (t) sin — sin 7z | 1— cos
7T5a2 (2n +1)5 l

Remark 25. The textbook’s answer has a ™ missing in sin 2”l+1

7. (1)

Proof. Let u(z,y) = X(2)Y (y). Then the original equation becomes

X"(@)Y (y) + X(2)Y"(y) =
X(0)Y(y) = X ()Y (y) =0

)Y (y
X(2)Y(§) = X(2)Y(-%) =0.

So we can consider the eigenvalue problem

~

—
8

~

X/I( —
X(0) = X(a) =0,

which has the solution X,,(z) = sin A,z with A, = (%)2 (n € N). Suppose u(z,y) =Y o0 Xn(2)Yn(y).
Then by the orthogonality of {X,,(2)}52,, we have

Y (y) = AnYaly) = 52 [(-1)" = 1]
Yo(=5) = Ya(5) =0.
To find the expression for Y, (y), we note the Green’s function associated with Y, (y) satisfies
2
229y t) = Aag(yst) = d(y — 1)
9(=%:t) = g(5:t) = 0.

Therefore
(1) = At)sinh VX, (y+ %), —-L<y<t
G = B(t)sinh A, (y — &), t<y<?,

where the coefficient function A(t) and B(t) are determined by the continuity property of g(y;t) at y = ¢

()smhf(t—i— 5) = B(t) sinh\/x(t—%)
VRLB(H) cosh VA (f %) — VARA(t) cosh VA, (t+ §) =

Solving this equation gives

A(t) = 7\/Esiih Vo sinh v\, (t — g)
Therefore
(:1) = sinh /A, (t — )smhw 2y + )1{ boy<y +sinh VA (t+ 2)sinh /A, (y — ) (t<y<b}
g\y;

VA, sinh /A, b
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and

> v sinhvAn(y — 5) b % sinh v/An(y + 2) b
)dt = ——_ e 2/ 'h\/Ant+fdt+/ ——— 7 2l ginh /A (t — =)dt
/,mg(y ) /g Vo sinh /b o (t+3) s Vwsinhyab (t=3)

sin w(y—2 sin - 2
_ sinhvA.—5) {cosh vV + g) - 1] y Pyt 5) {1 — cosh vy - g)

Ap sinh /A, b A sinh /A, b
—sinh v/A,b — sinh /A, (y — &) + sinh /A, (y + )
B A sinh v/, b
—sinh v/A,b + 2sinh @ cosh v A,y
- A, sinh v/A,b

1 i cosh v,y
An /\ncosh@.

Hence

4 o0 4 )
M) = R [ gsnan= I e

oo nmw

8a? _ cosh =7¥ . .
— (nm)3 [1 cosh &IE if n is odd,
0 if n is even.

a? a? cosh "% ]

Combined, we have

8a? 1 ) cosh 2%yl on 41

— — in x.

73 (2n+1)3 cosh 221 p "
n=0 2a

u(z,t) = ZXn(fE)Yn(y) =

a

(2)
Proof. Similar to part (1), we find the solution to the eigenvalue problem
X"(x)+AX(z)=0
X(0)=X(a)=0
as Xp(z) = siny/ Az with A, = (%)2 (n € N). Expanding u(z,y) according to {X,(z)}>2,, we have
U(l’,y) = Z Yn(y)Xn(x)7
n=1

where

o 2Py X (x)de 2 [, _ a?(=1)"tt 242 "
Yo(y) = W = a/o v y X, (z)dr = 2y{ - + ()3 [(=1)" - 1}}-

So the eigenvalue problem associated with Y;,(z) becomes

a2 (—1)n+t o2 "
{Yl(x) AnYale) = 2y {CEUT ey )

The Green’s function associated with Y,,(y) is the same as that of part (1):

. sinh /A, (t — %) sinh v/, (y + 3)1{,%@@} + sinh /A, (¢ + &) sinh v/, (y — 3)1{t<y<%}
9(yit) = VA sinh /b '
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Therefore
2a?

(n)

00 2 -1 n+1
/ 2t{a (=1) +
oo nmw

Note

/ tg(y;t)dt

inh v\, b
m.@+ﬁ/tmhr
vV Ap sinh /A, 0

~ sinh VAL (y+ 3) { b
T Vusinh Vb [2V, \ﬁ
sinh /A, (y

cosh \ﬁ

wlwuﬁ@ma

%2 {(—1)"+1 + (nip [(=1)" - 1]} /_O; tg(y;t)dt.

inh v/ b y
sm()/ tsinh v/ \ t+

fsmh\ﬁb
+—smh\ﬁ ]

[ b
VA, sinh v\, b [2\/2 Van
blsinh v/, (y + 2) + sinh v/, (y — )]

sh v/ Ay, 2
ymSJ*@+ﬁ_%ﬂm¢E@+§

2\, sinh /A, b
b sinh\/)\nyil

2\, sinh @ An’

n ysinh(—b)v/ A,
Ap sinh /A, b

Therefore
2a° n 2 n b sinhvAy y
YValy) = =l e (1) -] _y
nmw (nm) 2Xn sinh \ﬁb An
2q° b sinh VA, 2a° b sinh v, . .
_ T, (y Sl h \/ﬁf) + (nTr) nTA, zmh m@;) if n is odd,
”2:; (y - g:zi ‘/\/;73 if n is even.
Hence
u(z,y)
n=1
204 & (_1)n b sinh My onr N 8at b sin 2 7Ty Cont1
= —3 — ————— | sln —x —_— —_ sin TI.
w W 7 25in 2a? T = (2n+1)° Y7 25inh zgjlwb a

Remark 26. The above solution differs from the textbook’s answer by a sign. Check.

9.
Pmof.. We choose v(w,t) = cos Tx cos Tat and suppose u(z,t) =
equation

%w 28%w _

oz — @ gz =0

)
’lU|x=0 = O’ % =l
— ow
w(@,0) =0, Btlizo

Solving the associated eigenvalue problem

v(z,t) + w(z,t). Then w(zx,t) satisfies the

=0

= sin 2l



gives the eigenfunctions {X,,(z)} = {sin /A 2}, with A\, = (%)2 Suppose w(x,t) = >0 T, (t) X, (),

then we must have n=0
{ZZ‘LO(TA’(t) + Ana?) X () = 0
Yoo To(0)Xn(2) = 0, 3202, T(0) X () = Xo(a).

Therefore T),(t) = 0 for n > 1 and Ty(t) = %sin z;at. Combined, we conclude u(z,t) = cos Jx cos Tat +
2l

Gn Eooain T
=-sin Z;rsin ;at. O

10.

Proof. We choose v(z,t) = l’T"”Ae"‘Z’“ + %Be’ﬁ%t and suppose u(z,t) = v(z,t) + w(z,t). Note v(0,t) =
Ae="#t and v(l,t) = Be=#*' we have the following equation for w(z, t):

Ge - nG = |5 - wBit] = R Aatkem N £ BN = f(a, 1)
wlm:O = w|m:l =0
w(z,0) = —v(z,0) = —%A — 9B = ¢(x).

Solving the eigenvalue problem
X"(x)+AX(z) =0
X0)=X(1)=0

gives the eigenfunctions {X,,(z)}>2 ,, where X,,(z) = sin/ A,z with A, = (%)2 Expand f(x,t) according
to {X,,(z)}, we have f(z,t) = > 0" | gn(t)Xn(x) with

2 ['1-
gn(t) = 7/ [ ll’Aon,%efo‘Qm + %Bﬂ%—ie*ﬂ%t X, (z)dz.
0
Note fol X, (2)dx = 7\}7" cos vV Anz|h_o = (7_1)%71 = l[(fl)nn:lﬂ] and

/l Xy (z)de = 1/l xdcos \/ Apx = =t ﬁ(fl)"+1

- nm
Therefore
9 l B 2 —,ant_A 2, —a’kt
gn(t) = 7/ Aagfﬂe_o‘z"tXn(ar) + Bre i are xXn(z)| de
0
2 2
_ jAOPe_OFHt 4 iBﬁ2e—52nt(_1)n+1.
nmw nmw
Expand ¢(z) according to {X,,(z)}22,, we have ¢(x) = Y7 | a, X, (x) where
2 [ A-B 2A 2B
an = f/ [—A—i— x} X (x)de = === — == (=1)"*1,
U Jo l nmt nm

If we let w(z,t) = > 7 T,,(t) X, (), then

{z;iil[mw + oA T (D)X (2) = 30, ga(6) X (2)
fo:l T.(0)X,(z) = fo:l anXp ().

By orthogonality of {X,,(x)}, we have

T}, () + kAT (t) = gnl(t)
Tn(o) = Qp,
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which implies

¢
T.(t) = ef“A"t/gn(s)e")‘"Sds—Fan
0

—a?kt _ —kAnt —B%kt e—K)\nt

2K
nmw

g€ e

A2t ¢
@ —02k + K\,

+ BE%(—1)"*1 =

— 2K + KAy, + On

Combined, we can write the solution u(z,t) to the original problem as

2

[ — 2 2 > 2 —a®nt _ _K(nli) ¢
IAe—a Kt EBefﬁ m} +Z{ K [Aone e +Bﬂ2(—1)n+16
= | nr l

l l —a?k 4k (1) —3r 4k (4F)

. nm
+ ay pSIn —x.

Remark 27. If we choose v(z,t) = Asnel=2) ,—axt +B—Sinme*52’“, then it’s easy to verify % Yci Ty

sin al sin B Ox2
So this choice of v(x,t) simultaneously homogenizes boundary condition and the differential equation, which

makes the solution much easier.

O

15 Orthogonal Curvilinear Coordinates

15.1 Exercise in the text

15.1.

Proof. Suppose A, and A, are two distinct eigenvalues of the eigenvalue problem (15.41). Let ®,, be an
eigenfunction associated with \,, and ®,, an eigenfunction associated with \,,. Then

D" (¢) + A @ (¢) = 0, D ($) + @, (¢) = 0.

Therefore

2w

0 - [/()Qﬂ@zl(as)@n(@d(;sﬂm /j”%(@%(@@}—{/o & (6) B (@) + A /02”q>n(¢>q>m(¢)d¢

27
= [@n(O) B (8) — B (D)BL(A]ET + (A — An) / B1n (6)B1 (6)do

= (/\m - )‘n)/o ﬂ(bm(d))q’n(qs)dd)-

This implies ®,,, and ®,, are orthogonal to each other. O
15.2.
Proof.
2 1 2 1
/ sin m¢ cos modeo = 7/ sin(2me)de = — cos(2me)|2™ = 0.
0 2 0 4m

15.3.
Proof.

2im-2m __ e2im-0

o ime [ —imoy\E 3o o 2ime 7, _ € _
e'"? (e ) 'dop = e dp= ————— = 0.
0 0

2im
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15.2 Exercise at the end of chapter
3.
Proof. By formula (15.48), the general solution to the equation is
u(r,¢) = ag+ Polnr + Z (Cr1r™ 4+ Dy~ ™) sinme + Z (Cornar™ 4+ Dypar™ ™) cosme.
m=1 m=1
Suppose the expansion of f(¢) and g(¢) for the given eigenfunctions {0, sin me, cos me@}S°_, are, respectively,
oo (oo}
f(o) =40+ Z (A, cosme + By, sinme), g(¢) = Co + Z )(Cr cosme + Dy, sSinma).
m=1 m=1
The boundary conditions u(a, @) = f(¢) and u(b, d) = g(¢) gives the equations

Qo + ﬁO lna = AO leam + Dmla_m = Bm szam + Dm2a_m = Am
Ofo-'—ﬁo Inb = CO, lebm+Dmlb_m = Dm; Cm2bm +Dm2b_m = Cm

Solving these equations gives us the expression of u(r, ¢) as
o=y | 3 ()"~ ()" .
u(r,¢) = Aolnb g + mZ:1 (%)m — (%)m (A, cosme + By, sinmg)

)m (Cp cosme + D,y sinma).

4.
Proof. All the subproblems of this exercise share the same feature. So we first deal with a general problem:
0t = fz,y), 2°+y°<d,
u|m2+y2:a2 =0.

Similar to the calculations carried out in §15.4, we can use polar coordinate to transform the above problem
into the following one:

12 (r3u) 4+ L2 = f(r,¢), 0<r<a, 0<¢<2m
u(r; P)lo—o = u(r,@)lp=2r,  0<r<a,
Ou(r,¢) ‘ _ ou(r,¢) 0<r <
9% |g=0 9% |g=or’ T
u‘r:azoa 0< ¢ <2m,
u(r, ¢)|r=o is bounded, 0<¢<2m.
For the eigenvalue problem
d¢2 + A0 =0
®(0) = ¢(27)
o'(0) = &'(27),

we have eigenfunctions {1,sin me, cosm@}°°_; with eigenvalues {m?}%°_,. Expand u(r, ¢) according to this
system of eigenfunctions, we obtain

u(r,¢) = A(r) + Z B,,(r) sinmeo + Z C (1) cosm.

m=1
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Expand also f(r, ¢) according the above system of eigenfunctions, we have

flr,o) =a(r)+ Z by (1) sinme + Z Cm (1) cosme.

2

Then the equation -2 ( “) + %—“ f(r,¢) becomes

r or $2
10 ( dA(r = [10 m? ) (10 [ dCp(r) m?
mﬂir)ﬁ;Lm( >7ﬁMﬂmmﬁ;LmQ(ﬁ)@%ﬂmm¢
= a(r)+ Z by () sinme + Z em (1) cosme.
m=1 m=1

Therefore, we have the following equations

{iA’(r) + A"(r) = a(r), [rA (r)] = ra(r),

or equivalentl
Afa) =0, Arivaiently {A

a) =0,
LB (r) 4 BUL(r) = 2 By (1) = by (r), m>1
B, (a) =0,

{1c;n(r) + O (r) = O (r) = ep(r), m>1
Cm(a) =0.

(1) f(r,¢) = —4. In this case, a(r) = —4 and b,,,(r) = c,n(r) = 0 (m € N). It’s easy to see A(r) = —r?+a?.
By Theorem 6.3 and the boundedness of u(r,¢) at r = 0, we conclude By, (r) and C,(r) are analytic in
{2%2 + y? < a?} (m € N). Since by, (r) = ¢,n(r) = 0, we can deduce B,,(r) = Cp,(r) = 0. Combined, we

conclude u(r, ¢) = a? — r?.

(2) f(r,¢) = —4rsing. So a(r) =0, bi(r) = —4r, by(r) =0 (n > 2), and ¢, (r) = 0 (m € N). Then it’s
easy to see A(r) = By(r) = Cp(r) =0 (m € N, n > 2) by an argument similar to that of part (1). To find
Bi(r), we consider a general power series ¢(r) =Y - a,r™. Then

1 m? aom?  ap(l —m?
L)+ ¢ (r) ~ Tpry = -2y call — )

+ Z Qnpal(n +2)% —m2rm.

T
n=0

r

By letting m = 1 and the above formula equal to —4r, we conclude ag = 0, o is arbitrary, as =0, ag = f%

and a,, =0 for n > 4. So B1(r) = aqr — %r?’. By the boundary condition Bj(a) = 0, we have o = %az. So
Bi(r) = £(a®> = r*)r and u(z,t) = (a® — r*)rsin¢.

(3) Similar to the argument in part (1) and (2), we have u(r, ¢) = & (a* — r%)r?sin 2¢.

(4) Similar to the argument in part (1) and (2), we have u(r, ¢) = 3(a? — r%)r(sin ¢ + cos @). O

16 Spherical Functions

16.1 Exercise in the text
16.1.

Proof. Multiply both sides of (16.12a) by y*(x) and integrate from —1 to 1, we have by integration-by-parts
formula

O:u(y+1)/1 |y(x)|2dx+/_1ldi {(1—332)31} Y (2)dz = y(u+1)/1 |y(x)|2dx—/1 (1-22) ﬁ i

-1 -1

dx.
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2
When y(z) 20, [*,(1 —22)|%| de > 0 and [, [y(z)|2dz > 0. So
2
f_ll(l —2?) | & dx
viv+1) = i .
Jo ly(@) Pda
O
16.2.
Proof. We note
l n—1 l n—2
b 1 (I4+n)! [(x-1 v 1 (I+n) B x—1
i@ = n; W2 —n)" 2 » File) = ; e ="
So P/(1) = {1 = (1+ Dl and P/'(1) = g (o -2 = 3L+ 2)(+ DI = 1), O
16.3.
Proof. By formula (16.19), P/(—x)(—1) = (=1)'P/(z) and P/'(—z) = (=1)'P"(z). So
1 1 l 1
P/(-1) = ()" F(1) = (- + 1)
and
Lpl (_1)l
Pl(=1)=(=1)'P'(1) = (+2) I+ )i = 1).
O
16.4.
Proof. Po(x) = X,o(~1) premiGrrgrayi® " 50 P (0) = 0.
!
_ r (4042 —2r)! 241-2r
Povi(w) = Z::( SO A v T T s T ’
50 P2/l+1(0) = (71)122l+52(lgl+ﬁ()l!+1)!- O
16.5.
Proof. This is straightforward from (16.24). O
16.6.

Proof. By separation of variables, we have the following three eigenvalue problems:

L[] AR =0 [l [0SR ]+ - hgle0) =0 [er+pue =0
lim, o R(r) =0, ©(0), O(7) are bounded, ®(0) = ©(2m), ©(0) = '(27).

For the third eigenvalue problem, by the calculations in §15.4, page 216, the eigenvalues are m? (m € N)
with corresponding eigenfunctions sinme¢ and cosme. For the second eigenvalue problem, by §16.8, the
eigenvalues are \; = [(l + 1), l =m,m+ 1,m+2,--- with corresponding eigenfunctions P/ (cos ), where
P™ are the associated Legendre’s polynomials. Finally, for each given );, the calculation on page 236 shows
the first eigenvalue problem has eigenfunction »~'~!. Combined, we conclude the general solution has the

form of l

u(r,0,¢) = Z Z r_l_lle(cos [ A cosme + By, sinma].

=0 m=0

To determine Ay, and By, we expand f(6, ¢) according to {P/™(cos#)e?™?}, then use the fact u(a, 0, ¢) =
f(0,¢) and the orthogonality of { P/ (cos)ei™?}. O

86



16.7.

Proof. Similar to the calculations in §16.7 and Exercise Problem 16.6, we can conclude the general solution
has the form of

e’} l

u(r, 8, ¢) = Z Z P (cos 0){r'[A}, cosme + By, sinme] + 7 Cy,y, cos me + Dy, sinme]}.
=0 m=0

Then we expand f(6, ¢) and g(, ¢) according to { P (cos 0)e™?} to determine Ay, Bim, Clim, and Dy, O

16.2 Exercise at the end of chapter
17 Cylinder Functions

17.1 Exercise in the text
17.1.

Proof.
cos?(vm)J,(z) — cos(vm)J_, (z) + sin®(vm)J, (2)
sin(vm)

Ju(z) — cos(vm)J_,(z)

sin(v)

cos(vm)N,(2) + sin(vm)J,(z) =

= N_,(2).

k .
By noting Jy, (ze™™) = 327, k,F(;j[)VH) ( )Qkiu Fvmmi — Jo (2)etV™™ we have

3
COS(Vﬂ')Jy<Z€mm) J_ ( rrwri)

Nl/ (Zemﬂ'i)

sin(vm)
_cos(vm)J, (z)e™™ — cos(vm)J, (z)e” V" + cos(vm) J, (z)e” T — J_, (z)e” "
sin(vm)
= 2isin(mu) cot(vm)Jy(2) + e ™TN,(2).
The equality N_, (ze™™) = e"™™ N_,(z) + 2isin(mvr) csc(vw)J,(z) can be proved similarly. O

17.2.

Ju(m) V( )
J,(z) N, (z)

Proof. If N, (x) and J,(x) have a common zero, then their Wronskian will vanish at that

zero, which contradicts with the fact that J, and N, are linearly independent (see §6.4, page 79). O
17.3.
Proof. We note
d LN (@) = d [cos(vm)z”J,(x) —a¥J_p(x)] _ cos(vm)x’ J,—1(x) — %[m‘(_”)J(,y)(x)]
dz  dx sin(vm) B sin(vm)
_cos(vm)at T, 1(x) +at T (x) o cos(v — ) Jy_1(x) — J_ (1) ()
N sin(vm) B sin(v — D)7
= a"N,_1(x),
and
d. _, d [cos(vm)a™VJ,(x) —ax " J_,(x) cos(vm)(—x ") Jyp1(x) — 7V J_p_1(x)
LN = o . - .
dx dx sin(vm) sin(vm)
_ 1 —V —V o
_ cos(v + Dz . Jor1(x) + VI, (x) Ny (@),
sin(v + )7
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17.2 Exercise at the end of chapter
18 Summary of Separation of Variables

18.1 Exercise in the text
18.1.

Proof. For o € C, we have

0 <|f = agl* = IfI* = 2Re(f, ag) + |al*|g]*.

If g # 0, we pick o = (‘g’"gz

, from which the Schwarz inequality is immediate. O

18.2.

Proof. Divide both sides of the equation by a(x), we get y” + %y’ + %y = 0. Multiply both sides

- b(m)d
by e/ “@ % we get

18.2 Exercise at the end of chapter
1. We apply the result obtained in Exercise Problem 18.2.

(1)

Proof. Multiplying both sides of ch 4+ 235 +(z+ Ny =0Dby z, we get - [mQ gg} Az +2)y=0. O

(2)

Proof. We have p(z) = el T = 2%(1 — 2)*=2. So ¢q(r) = 0 and p(x) = —z* (1 — x)b—2~ L O
(3)

Proof. Multiplying both sides of the equation by e~ we get % [ﬂc - dy} + e Ty = 0. O
(4)

Proof. Multiplying both sides of the equation by e‘”‘Z, we get % [e‘” dy} +2Xe” xz =0. O

2.
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dR

Proof. The key idea is to make a change of variable x = x(r) so that r% = 2%, This implies dz = %, SO

dz
z(r) = Inr. Plugging r = e” into the original equation, we have
1d ( dR A 1 d dR
——r— —R = — — + A FR=0
rdr(rdr>+r2 o erdr de ’
d?R(z)

which is simply the equation = 4+ AR(x) = 0. This reminds us of the eigenvalue problem (14.3) (§14.1,
page 186), only that a is not zero. So we make a further change of variable: x = z + Ina, then we have the
following eigenvalue problem

PRE) 4 AR(z) =0
R(0) =0, R(Inb —1na) = 0.

2
The above new eigenvalue problem is shown in §14.1 to have the solution A\, = (ln b"_’rlna) , Ro(2) =
sin (ﬁz), n=1,2,3,---. Changing back to the original variable r, we have R, (r) = sin (Egjggnﬂ' .

[

3.

Proof. Suppose we have two distinct eigenvalues Ay and Ag, with their corresponding eigenfunctions y; ()

and y2 (), respectively. Then from the equation -& {p(w)dy;iy)} + [Mp(z) = ¢(2)]y1(z) = 0, we have

0 = [{nw b0 ™0+ hupte) - e @) b ao

b
= pa(x)p(@)yi(2)lg + / Pip(z) = q(@)lyr(2)ya(z)da.

By symmetry, we have
b
@@+ [ Pap(o) = gl @ha(e)ds = 0.

a

Taking the difference of these two equations and using the condition p(a) = p(b), we have (po := p(a) = p(b))

b
0 = poly2(x)i(x) — yala)yr ()]} + / (A1 = A2)p(x)yr (2)y2(x)dx

b
— (|2 1) s - (|2 02 1) m@ih(a) + (1 =) [ plaln@m(ali
21 Q22 Qo1 (22 a
So if |“1' *2| =1, we must have fb p(x)y1(z)y2(z)dr = 0 since Ay — Az # 0. O
Q21 Qo2 e
4.

Proof. Suppose u =3y, a;®y, then
V2’LL = Zakv2(bk == Zak(*/\k)@k == 7f = — ZAk(I)k-
k k k

Comparing the coefficients, we conclude ay, = f—k. Sou=73, f—:@k. O

5.
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Proof. We first solve the eigenvalue problem

V20 (2,y) + A0(z,y) =
®(0,y) = ®(a,y) = mxm ®(x,b) = 0.

Suppose ®(z,y) = X ()Y (y), then we have = ((;;) + 3;”(%) + A = 0. Solving two separate eigenvalue problems

X"(@)+aX(@) =0 [Y"(y)+BY(y) =
X(0) = X(a) =0, Y(0) =Y (b) =0,

we have a,, = (%)2 with X, (z) = sin ™™ and 3, = (”—”) with Yy, (y) = sin 3% (m,n € N). So the

eigenvalue A\, = apy + B = (%)2 + (”—b’r)z and by the result of Problem 4, we have

oo
A
u(x,y) = Z — L — sin M7 gin %,
m,n=1 (T) + (T)
where Ay, = 2[5 sin "L dg fob f(z,y)sin 74 dy. O

19 Applications of Integral Transforms

1.
Proof. Let U(z,p) = [, u(x,t)e P'dt. Then

o) oo 92
0 = / 8u(x’t)e—ptdt_,i/ w@"”‘dt
0 0

ot Ox2
U (z,p)
0x?

(o)
u(w, t)e PP +p/ e Plu(z, t)dt — k
0

2
9 U(fﬂ,p).

= pU(.’E,p) - D2

So the general solution for U(z,p) is C4 (p)e\/g"” + Cs(p)e -VEe, By the boundedness of u|;— 0, we have
the boundedness of U(z,p)|s—cc. So we must have Cy(p) = 0. Since U(0,p) = ug [, e Pldt = 22, we have
U(z,p) = e Ve, By Example 9.8, u(z,t) = ugperfc—— svrp Which satisfies u|;—¢ = 0. O
2.

Proof. The partial differential equation for the problem is

Ou 0%u
v gt
ot 0x?
ut=0 =0, z <0

=0,2>0,t>0

U|p=o = ug, x> 0.

Let U(x,p) = f u(z,t)e”P'dt. Then (intuitively, u(z,t) should approach to % as ¢ — oo and is hence
bounded)

e’} o0 02
0 = / au(x’t)e_ptdt - KJ/ Oulz,t) u(x’t)e_ptdt
0 at 0 8I2

—pt|oo <o 0%U(x,p)

= u(z,t)e PS +p/0 e ptu(x,t)dt—/{w
0*U(z,p)
= —u(z,0) +pU(z,p) — K o
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So we have the ODE for U(z,p): 82((;9(;20’1)) - 2U(z,p) = 7%1{%0) Using the method of Green’s function,
we can obtain (see Example 10.8)

—/Ele—t| Y0l {t>0} g —

1 o Uug /oo
e
2\/2 Lo K 2/pPk Jo

By Example 9.8, we can obtain the formula for u(z,t) as

U(l‘,p) = e*\/g|m7t|dt _ {%gexp{\/fx} T < 0’

-5 exp{—+/Bz} x>0.

rerfc (— 2}

ulet) = ug — —erfc( \/R) x> 0.

3.

Proof. Let U(x,p) fo (z,t)e"Ptdt. Then the equation B—'t‘ — mg Y — () gives us % - LU(z,p) =0,

whose general solution is C1(p )e\ﬁ + Ca(pe ~VE2, For convenience of applying the boundary conditions,
we can write U(z, p) as C1(p)sinh \/Ex + C5(p) sinh \/Z(l — z). Then

_ . p _ > 7l<ea2t —pt _ A
U(0,p) = Ca(p) sinh \/;l —/0 Ae e Ptdt = PR

and -
. p — kB2t _—pt B
U(l,p)=C n/Zi= [ B P — .
(I,p) = Ci(p) sin \/; /0 e e Pz
A sinhy/p/s(l-x) B sinhy/p/kzx

Therefore, U(z,p) = T Y PFOR sinn o el O
4.
Proof. Define U (k,t) = f 75wz, t)e **dy and F(k,t) = \/% [, f(z,t)e**dz. Then we have

—az’éﬁf*%a%? U(k,t) = F(k,1)

U(k,0) = \/ﬂ 7 d(x)e*da == D(k)

LU(QE’” (v)e"*2dy .= W(k).

O_ﬁf—m

The solution of the above problem can be obtained by superposition of solutions to the following two
problems:

2*U(k
8t(2 = +a’k*U (kvt) =0

Uk,0) = ®(k), %502 = (k).
and X
TOEL 4 a2k2U (k,t) = F(k,t)
Uk,0) =0, %G| =0,

To solve the first problem, we note the general solution to the homogeneous differential equation is U(k,t) =
Cy (k) sin(akt) + Co(k) cos(akt). The initial conditions dictate Cy(k) = ®(k) and Cy(k) = % So the
solution to the first problem is

U(k,t) = \I’a(]l:) sin(akt) + ®(k) cos(akt).
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To solve the second problem, we apply the method of Green’s function and obtain (see formula (10.34))

Uk, 1) = i /0 Pk, €) sin(ak(t — £))de.

Combined, we conclude the solution to the original non-homogenous second order ODE with non-homogeneous
initial conditions has the form of

U(k,t) = ®(k) cos(akt) + \Ij(:) sin(akt) + %/0 F(k, &) sin(ak(t — &))dE.

a

To find the inverse Fourier transform of ®(k) cos(akt), we note

elakt 4 e—iakt

O (k) cos(akt) = 5 \/1271-/—00 d(x)e ™ dy
L > —ik(z—at) - —zk(r-‘,—at) :|
|:\/%/—oo o(x)e dx + /_ o(z dx

[\/12? /_O:O oy + at)e” M dx + —/ o(y — at)e Zkydm] .

So F~H®(k) cos(akt)] = 3[p(x + at) + ¢(z — at)].

To find the inverse Fourier transform of \I’(,f) sin(akt), we assume F 1 {‘P(:) sm(akt)} = h(z,t). Then

1
2
1
2

(k) cos(akt) — % {‘I’;:) sin(akt)} y. %]—"(h(x,t)) _F (8}‘(8‘";”5)) .

Using the result for ®(k) cos(akt), we have
Oh(x,t)  YP(x+at)+(x — at)

ot 2

So there exists some function [(x) such that

Sty (e)de

h(z,t) = 5

+ l(z).

JIretw©de | wk)
T 2a | T Tak

Once we “guessed” out the form of h(z,t), we can verify easily that F [ - sin(akt), so

x+at

I(x)=0and F! ( ok bln(akt)> = o [TT(€)dE.
To find the inverse Fourier transform of - fo (k, &) sin(ak(t — &))dE, we suppose

A [ Fgsntarte - ] = e,

Then
t
F(HD) _ O e = / F(k, ) cos(ak(t — 7))dr
ot ot 0
t iak(t—T) —tak(t—T)
= / F(k:,T)6 te dr.
O 2
By the convolution theorem of Fourier transform, we have
F(k, 7)™ =D = F(f(z,7)F(O(x +alt — 1) ( / flo—€7)8(¢ +alt - T))d£>

= F(f(z+alt—7),7)),
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F(k,7)e =) —  F(f(x,7)F(6(x —alt —7) ( / flz—&,7)0(6 —a(t — T))dg>
= F(f(x—a(t—1),7)).

So we have

f(@th) /.7-' (x+alt—m71),7 ))—|-.7:(f(a:—a(t—T),T))dT7

2
which implies

dr.

ath /fx+at—7) )+ flx —a(t —7),7)
2

Therefore, there exists some function {(z) such that

z+a(t—T)
H(x,1) / / ,7)dedr.
z—a(t—T)

Now let’s wave hand and assume [(x) = 0, we then have the solution to the original problem

N —

a:+at z+a(t—)
u(z,t) = =[od(z + at) + ¢(x — at)] + % /7 t &)dé + —/ / - ,T)dEdT.

Remark 28. It’ll be nice if we can find an easy way to show l(x) = 0 in the above calculation. We leave
this to the next version of the solution manual.

O
5.
Proof. We define
1 .
U(k7m7t) = o5z / u(x=y>t)e_1kl_lmydxdyu
2 R2
Pk 7ik:1:7imyd d
(hom) = 5= | olan)e vy,
and
U(k,m) / V(x,y)e *ETIMY dady.
Then the original problem is converted after Fourier transform into the following problem
{ngié’"*” + a2k + m2U (k,m, ) = 0
Uk,m,0) = &(z,y), G|, =U(km).
Then it’s easy to deduce that
v
U(k,m,t) = ®(z,y) cos(v/ k2 + m2at) + % sin(v'k? + m2at)
a m
Suppose F~1 [Smc(l% Im] = h(z,y,t). Then we have by convolution theorem of Fourier transform
0
Uk,m,t) = Flo(z,y)l 5. Flh(z,y, )] + F¢(z, y)]Flh(z, y, 1))
0
Hence, u(x,y,t) can be written as
0
u(@,y,t) = / V(@' yHh(z —a'sy —y' )de'dy’ + = / o,y Yz — o',y — ' t)da'dy’.
R2 R2
To find h(x,y,t), ... (to be continued) O
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20 Method of Green’s Function

1.
Proof. O

21 Introduction to Calculus of Variation

21.1 Exercise in the text
21.1.

Proof. We follow the line of reasoning in Gelfand and Fomin [4], §35. Assume the integration region R stays
fixed while the function u(zq,--- ,x,) goes into

U*(xla"' ,{L‘n) :u(ajh'" 7xn)+€¢($17"' 7.’17n)+ )

where the dots denote terms of order higher than 1 relative to €. By the variation dJ of the function

Ju] = f e fF(xh Ce Ty Uy Uy, Uy, )Ty - - dTy, corresponding to the transformation v — u*, we
mean the principle linear part (in €) of the differences J[u*] — J[u]. For simplicity, we write u(z), ¢(z)
instead of u(xz1, - ,zn), ¢(x1, -+ , &), dz instead of dzy - - - dx,,, etc. Then, using Taylor’s theorem, we find
that

Ju*] = Ju]

B /R{F[I’u(z) +ep(x), Uz, () + €Dp, (), -+, Ug, (T) + €dp, ()] — Fla,u(x), vz, (), -, Us, ()] }dz
5/3 <Fu¢+ ;ELwléqu) de+ -+,

where the dots again denote terms of order higher than 1 relative to €. It follows that

8J = 5/ (Fugb +y Fuqﬁ> dz
R i=1

is the variation of the functional J[u].
Next, we try to represent the variation of J[u] as an integral of an expression of the form

G(x)gp(x) +div(---),

i.e., we try to transform 6J in such a way that the derivatives ¢,, only appear in a combination of terms
. , , . : o OF.,,
which can be written as divergence. To achieve this, we replace Fy, ¢z, () by zo-[Fu,, ¢(z)] — ;=9 ()

and obtain
"9 "9
0J = E/R (Fu - ;:1 &CZFul,> ¢(x)dz + E/R ;21 %[Fu“ ¢(z)]dz.

This expression for §J has the important feature that its second term is the integral of a divergence, and
hence can be reduced to an integral over the boundary I' of the integration region. In fact, let do be the
area of a variable element of T', regarded as an (n — 1)-dimensional surface. Then the n-dimensional version
of Green’s theorem states that

"9
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where G = (F, ,---,Fy,, ) is the n-dimensional vector whose components are the derivatives F,, ,
(v1,+ -+ ,vp) is the unit outward normal to T'; and (G, v) denotes the scalar product of G and v. Therefore

0] = e /R (Fu -y £Fu> (@)de + < /F 6(2)(G, v)do.

In order for the functional J[u] to have an extremum, we must require that 6.J = 0 for all admissible ¢(z),
in particular, that §J = 0 for all admissible ¢(x) which vanishes on the boundary I'. For such functions, ¢.J

reduces to
"9
6 - Fu - 7Fu . d )

and then, because of the arbitrariness of ¢(x) inside R, §J = 0 implies that

vV =

1z—§3f;ﬂﬁzo

i=1
for all z € R. O
21.2.

Proof. We follow the line of reasoning in Gelfand and Folmin [4], §6. The problem can be formulated as
follows: Among all curves whose end points lie on two given vertical lines x = a and x = b, find the curve
for which the functional

b
sz/F@%wm

has an extremum.
We begin by calculating the variation §J of J[y]. As before, §.J means the principle linear part of the
increment

b
AT = Jly+ b= Ty = [ (Flay+ by + ) = Flayy)lda.
Using Taylor’s theorem to expand the integrand, we obtain
b
AJ = / (Fyh+ Fyh'ydx + - - -,
where the dots denote terms of order higher than 1 relative to h and h’, and hence
b
é6J :/ (Fyh + Fyh')dx.

Here, unlike the fixed end point problem, h(x) need no longer vanish at the points a and b, so that integration
by parts now gives

b
51 = [ (A= ) iods s oo,
o dz

b
d
/ <Fy — d.’l?Fy/> h(l’)d?ﬂ + Fy/|x:bh(b) — Fy/\z:ah(a).

We first consider function h(z) such that h(a) = h(b) = 0. The rationale is that if y* is an extremal
among all admissible function, then y* must be an extremal among the smaller class of functions whose
values at end points agree with those of y*. Then as in the simplest variational problem, the condition
0J = 0 implies that

d
F, - %Fy/ =0.
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Therefore, in order for the curve y = y(z) to be a solution of the variable end point problem, y must be an
extremal, i.e. a solution of Euler’s equation. But if y is an extremal, the integral in the above expression for
0J vanishes, and then the condition §.J = 0 takes the form

Fylz=ph(b) — Fy[z=ah(a) =0,

from which it follows that
Fy"z:a = 07 Fy’|w:b = 07

since h(z) is arbitrary. Thus, to solve the variable end point problem, we must first find a general integral
of Euler’s equation, and then use the natural boundary conditions Fy/|4=q = Fy|s=» = 0 to determine the
values of the arbitrary constants. O

21.2 The Rayleigh—Ritz method and its application to the Sturm-—Liouville
problem

The textbook’s explanation of the Rayleigh-Ritz method is a bit ambiguous. We therefore give a summary
of this method, as presented in Gelfand and Folmin [4], Chapter 8.

The idea of the Rayleigh-Ritz method consists of two parts. First, convert a differential equation to a
variational problem, in that the solution of the differential equation is the extremal of a variational problem.
Second, in a certain function space, use a set of complete functions to approximate the extremal, so that
each approximation is reduced to a finite-dimensional optimization problem.

As an example, consider the Sturm-Liouville problem: Let P = P(z) > 0 and Q = Q(z) be two given
functions, where @ is continuous and P is continuously differentiable, and consider the Sturm-Liouville
equation

—(Py')' + Qu = My,
subject to the boundary conditions y(a) = y(b) = 0. It’s required to find the eigenfunctions and eigenvalues
of the above boundary value problem.

The following result converts the above problem of solving a differential equation into a problem of finding
variational extremal (Gelfand and Fomin [4], §12, Theorem 1; also see §41.1):

Theorem 3. Given the functional J[y] = f; F(x,y,y’)dz, let the admissible curves satisfy the conditions

b
y(a) = A, y(b) = B, Kly| = / Gy, )de = 1,

where K[y| is another functional, and let J[y] have an extremum for y = y(x). Then, if y = y(x) is not an

extremal of K[y|, there exists a constant A such that y = y(z) is an extremal of the functional f;(F—i—)\G)dac,
i.e. y =y(x) satisfies the differential equation

d d

With the above result, the Sturm-Liouville problem is reduced to finding an extremum of the quadratic
functional

b
J[y] :/ (Py? + Qy*)d,

subject to the boundary conditions y(a) = y(b) = 0 and the subsidiary condition ff y?dr = 1.2

Then we can apply the Rayleigh—Ritz method as follows. Suppose we are looking for the minimum of a
functional J[y] defined on some space M of admissible functions, which for simplicity we take to be a normed
linear space. Let (1, g, -++ be an infinite sequence of functions in M, and let M,, be the n-dimensional
linear subspace of M spanned by the first n of the functions (¢;)$2;. Then on each subspace M,, the
functional J[y] leads to a function J[ayp1 + - - + apwy] of the n variables aq, -+ -, ay,.

2Use Theorem 3, changing X to —\.
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Next, we choose a7, - -+, a, in such a way as to minimize J{aip; + - + anpy], denoting the minimum
by p, and the element of M,, which yields the minimum by y,,. We say the sequence (¢;)$2; is complete (in
M) if given any y € M and any ¢ > 0, there is a finite linear combination 7, of the form 7, = > | a;¢p;
such that |9, — y| < e (where n depends on ¢). Then we have the following theorem

Theorem 4. If the functional J[y] is continuous in the norm of M, and if the sequence (¢;)$2, is complete,
then

lim pu, = p,
where p = inf,, J[y].

In the particular case of the Sturm-Liouville problem, we can choose ¢ (z) = sin(kz). Then (1,)52,
converges to the smallest eigenvalue of the Sturm-Liouville equation and (y,)22; converges to the corre-
sponding eigenfunction. We can continue this procedure to find the rest of the eigenvalues and eigenfunctions
(see Gelfand and Fomin [4], §41.4). This is summarized in the following result

Theorem 5. The Sturm-Liouville problem has an infinite sequence of eigenvalues XV, X2 ... and to
each eigenvalue N there corresponds an eigenfunction y\™) which is unique to within a constant factor.

21.3 Solutions of the exercise problems from Gelfand and Fomin [4], Chapter
8

2.

Proof. We first calculate the exact solution. Let F(x,y,y’') = y"> —y* — 2zy. Then Euler’s equation becomes

d d
SR, =% — 2 — —(2) = —2 ",
e y—2z dw( y') (y+x+y")

To solve the second order linear ODE

F, —

y'+y=-x

y(0) = y(1) =0,
we can employ at least four methods: the Green’s function for boundary value problems, Fourier expansion
over the interval (0, 1), operator calculus (including Laplace transform, see Ding and Li [2]), and reduction
to a system of first order ODEs (also see Ding and Li [2]). However, it’s very easy to see directly the
general solution of y” +y = —x is —x + Cy cosx + Cy sinz. Using boundary condition, we conclude y(x) =
—x 4 csc1sinz. In this case, it’s easy to calculate J[y] = 3.

We then use the Ritz method to find an approximate solution. For this purpose, we need to show the

completeness of {¢,}72 ; in the space M = {f € D1(0,1) : f(0) = f(1) = 0}, where ¢, = 2"™(1 — x) and the
norm is that of D1(0,1) (i.e. |f]| = maxo<z<1 |f(x)] + maxo<z<1 |f'(z)]).®> We have the following lemmas.

Lemma 1. The set of polynomials is dense in D1(0,1).

Proof. By the Weierstrass approximation theorem, for any element f € D;(0,1), we can find a sequence
(P,)5 of polynomials, such that

Jnax, |f'(z) = Pa(z)| <

Let Qn(z) = [ Pu(€)dé + f(0). Then @, is still a polynomial and

3=

Q-1 = o | [P+ 10 - | [ 1@+ £0)] |+ pma, 1Pato) - 1)
x , 1
< oréljgl o |Pn(€)_f(§)|d§+ﬁ
2
< =z
n
This proves the lemma. O

3For definition of the normed space Dx(a,b), see Gelfand and Fomin [4], page 7.
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Lemma 2. The linear space spanned by {¢n,}o2, is dense in M under the norm of D1(0,1).

Proof. 1t’s clear each ¢, € M. Hence any finite linear combination of ¢,,’s belongs to M. For any f € M,
by Lemma 1, we can find (e,,)22; with £, | 0 and a sequence (P,,)22; of polynomials such that

|1Pn = f] < éen.

Each P, can be written in the form of @, (z) + a, + B,(1 — x), where @, (x) is a finite linear combination
of ¢;’s. Since | P, — f| — 0 as n — oo, we have o, = P,(1) — f(1) =0 and o, + 8, = P,(0) — f(0) =0
as n — o0o. Therefore, we have by triangle inequality

1Qn = fI < lom + Bu(1 — @) + [P — [ < & + |an| +2|8n] — 0
as n — oo. This shows the linear space spanned by {¢,}>2 is dense in M. O

Combining Lemma 1 and Lemma 2, we can by Theorem 4 find the approximate solution of the original
variational problem. Indeed, consider the n-th degree approximate solution y, = ZZ=1 ankpr(x). For

simplicity of notation, we write ay, for each anx. Then finding the extremum of Jy,| = fol (Y2 —y2 — 22y, )dx
becomes the minimization of a function of n variables ay, as, - - -, ay,:

argming, .., jerr J[Yn]-

Note for ¢ =1,--- ,n, we have

) Lo

—Jlyn] = 22— 2xy,)d

9a. [yn] /0 aai(yn Yn — 22yn)dx
1

fg//a/,i,xi g
= . Yn day Yn — Yn da, Yn da Yn

1
- 2/0 (Yn#i(2) = ynpi(x) — 2pi(2)) dw

) 2": ki 2ki+i+k+ik+i+k+ 2 1 1
a _ _ _
ki1 i+k k+i+1  k+i+2 k+i+3) (i+2)(i+3)

So the extremal y,, = Y _, arpy(z) are given by solving the linear equation

a 1
1 .
AlZI=1 2|
1
an (n+2)(n+3)
ki 2kititk | ik+itk 2 1
where Ajx = 77— G Tl s R Al T Rl v

Therefore, to find the n-th degree approximation of the extremal y as well as the corresponding extreme
Jy], we first solve the above system of n linear equations to get y,, and then apply either the quadrature
method or an explicit formula to evaluate J[yy].

Remark 29. Note the matriz A is ill-conditioned as n grows. So we postpone a numerical illustration of
the above approximation to next version of the solution manual.

O
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Proof. Since on a finite interval, L?-convergence implies L'-convergence (by the Cauchy-Schwarz inequality),
we can without loss of generality assume the meaning of ”in the mean” is in L?-sense. By extending h”(x)
to an odd function on [—m, 7] (not necessarily continuous at 0), we can write h”(x) on [0, 7] as

B (x Z A, sin(rz)

where A, = 2 [7 b (z) sin(ra)dz. Define

n

- Z % sin(rz).

r=1

Then h!!(z) — h”(z) in L%(0,7) as n — oo.
Meanwhile, we have (note h'(0) = 0)

() — (@) \ | e+ w0~ [ wierag - w0o)

IN

/ I11(€) — W (€)|dE + |1, 0)
< W = W' lgsom /T + IRL(O)].
So |1, — W'l z2o.m < MY — h"|z2(0myT + B, (0)] /7. We further note

Z o Z o / R (x) sin(rz)de = zj: %/ ) cos(rz)dz.

By extending h/(z) to a continuous even function on [—m, 7|, we can conclude that the Fourier cosine
expansion of h'(x) (note h(0) = h(w) = 0)

TZ:HO % /Oﬂ h'(z) cos(raz)dz - cos(rz) = Tz: % /Oﬂ I () cos(ra)dz - cos(rz)

converges to h/(x) pointwise as n — oco. In particular, h, (0) = >0, 2 fo K (z) cos(rz)dz - cos(0 - x) —
h'(0) = 0 as n — oo. Combining with the inequality |h], — h'|2(0,x) < [|h7, — h lz2(0,m7 + [hy, (0)]/7, we
conclude R/, (z) — h'(z) in L?(0,7) as n — oo.

Finally, we have

|hin () = h(2)| =

| e+ ha0) — [ (@~ nio \ /\h’ (€)|dE < I, — W |2gom V.
0 0

So [hn = hlr2(0,x) < lhy = B L2(0,mm™ — 0 as n — oo.
In Summary, we conclude as n — 00, hy, — h, hl, — b/, and hl, — h" all in L2(0,7). And O = —4¢

fo R (x) sin(rz)dz is clearly independent of n.

O

9.
Proof.

IN

b b
/ | Fn@)l 90 () — 9() e + / 9@ fa(z) — f(@)lda
< max |ga(2) = 9(@) || fal L2(ap) VO — a+ [ fo = Flrzan 19072 (an)-

a<z<b

b
£)gn (2)de — / f(@)g(x)dz

Since f,, — f in mean, (|| fn ||L2(a b))p=1 is bounded. As n — oo, the RHS of the above inequality goes to 0,
so we can conclude f; (@) gn(z)dz — fa f(z ) O
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21.4 Exercise at the end of chapter
1. (1)
Proof. F(z,y,y’) = v/1+ y?y’2. So the Euler-Lagrange equation becomes

OF d oF yy'? d y'y?
oy dx oy 1+ y2y?  dr /14 y2y?
", 2 2 2,72 _ o220y +2y%y "
2 1 =
B yy'? W'Y+ 209" )V A+ p2y” — gy SR
1 + y2y/2 1 + y2y/2
= 0.

After simplification, we have 0 = 3"y + y"?> = (v'y)’ = (%y2)”. Therefore, the general solution is y? =
ar +b. O

(2)

Proof. F(x,y,y') = y? + 2, so the Euler-Lagrange equation becomes

oF daF_ d N "
67y %87/—29 %(29)—2y 2y =0.

Therefore y = ae® 4+ be™*. O
3)
Proof. F(z,y,y') = ﬁy, So the Euler-Lagrange equation becomes

OF gAY d N _
oy dxdy  dx(x+vy')?

So there exists some constant C such that W = C, which gives 3y’ = —x+,/&. Use a change-of-variable,

we have 3/ = 32—“561/2 — x. Hence y = azr3/? — %2 + b. ]
(4)
Proof. F(z,y,y') = VT + 2y/1+ y”2. So the Euler-Lagrange equation becomes

d 2y’
0— — |VIto—rie—| =
dx 2¢/1 + y/2

There must exist a constant a such that /1 m = a. Solving this equation gives y' = ito—az’

Therefore y = 2av/1 4+ x — a? +b. O
2.

Proof. The point on the cone x? 4+ 32 = 22 can be described by the parametric coordinate (z cos @, zsin 6, z)

(0 < 6 < 27). For any given curve « on the cone, assuming 7 is parametrized by 6, the length of ~ is

171:7/1) 2 dz (w1,91) (z1,91)
) + <d9) df = V22 +2(2)2d0 = / F(0,2,2")do,
(

!Ifo,yo 0,Y0) (0,y0)
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where F(0, z,2") = y/2%2 4+ 2(2")2. So the Euler-Lagrange equation becomes

oF doF z 2z

d
9z dOoz /22 1 2(2)2 T do /22 1 2(2')2
" /52 N2 _ 9,0 22/ 422"2"
. _22 V22 +2(2)2 -2z N

EEPET EREE
_ z B 22"[2% + 2(2")?] — 2(2")2(z + 22")
22 +2(2)? [22 4+ 2(27)2]\/22 + 2(2')?
= 0.

Simplifying the above equation, we have
2[22 +2(2)%) — 22722 — 4(2)22" + 2(2))% 2 + 4(2)22" = 2[22 + 4(2)? — 222" = 0.

2(2/)2
22

2

z

AN\ ", N\2 7 N 2 . L. 7" N\ N 2 ..
(z—) = @) (z—) . Using the substitution %- = (Z—) + (Z—) , we transform the original

z 22 z z
2\’ Z\? 1
() - (%) -5

Define h(0) = Z/((g)) = %/, we get a Riccati equation of h:

z

So a non-trivial solution must satisfy the equation z” — 2(2’)? — 2 = 0 or equivalently 27// — = 1. Note

equation to

1
W =_-+h?
2
It is well-known that a general Riccati equation can always be reduced to a second order linear ordinary
differential equation (see Remark 30 below). For our particular case, we use the substitution h = —*-, then
1 w” w2 W' 2 w"
*:hl_h2:—7+( 2) _ - -2
2 w w w w
So w satisfies the equation w” + %w = 0, which has a general solution w = C cos % + Cs sin %. By using
trigonometric identities, we can write w as 1 cos G—\J/Cb. Note =% = h = Z we conclude z(f) = —1~ =
0] w z w(0)
soc 210
asec g

Remark 30. In mathematics, a Riccati equation is any ordinary differential equation that has the form
Y = qo(x) + q1(2)y + q2(2)y? where qo(x) # 0 and qo(x) # 0. It can be reduced to a second order linear
equation by the following procedure (see, for example, wikipedia). First, use the substitution v = qa(x)y.

Then the original equation becomes
v =v? + R(z)v + S(x),

where S(x) = qo(x)q2(x) and R(z) = q1(x) + ¢4(x)/q2(x). Then substitute v = —u'/u and it follows that u
satisfies the linear second order ODE

v — R(z)u' + S(z)u = 0.

A solution of this equation will lead to a solution y = —u’/(ugz(x)) of the original Riccati equation.

101



Proof. Points on the cylindrical surface are described by the parametric coordinates (r cos 8,7 sin 8, z) where
r > 0 is a constant and 6 € [0,27). For any curve v on the cylindrical surface, assuming ~ is parametrized
by 6, then the length of ~ is

(z1,91)
V24 (2)2d0 = / F(0,z,2")do,

(z0,Y0)

(z1,91)

(z0,Y0)

where F(0,z,2") = /1% + (#')? and the Euler-Lagrange equation becomes

Nz 7’2+(Z/)2+Z/ 2’2"

OF d OF _ d 2 \/r2+(2)2

9z d0y T Al rZy () 12 + (2)?

After simplification, we get 2”[r? 4+ 2(2')?] = 0 and hence 2" = 0. This implies 2(6) = a + bf for some
constants a and b. O

22 Overview of Equations of Mathematical Physics

22.1 Summary on the classification of second order linear PDE

Suppose we have a general second order linear partial differential equation

n o n 22w n ou
DD Ay 0z0z, Z:O Bigy, tCu="r

i=1 j=1

If we choose a non-singular change of variable

T, = ml(ylu"' 7yn)
o =22(y1, - 1 Yn)

Ty = xn(yla e 7yn)7

then the original equation becomese

i 9wy
with e .
i dyx. Oy, 9y oy
Akl:Z A’Lja P 7BZ_ZZA”8 p) +ZB’La
=1 j=1 =1 j=1
In matrix form, we have B
A= (Ay) =JAJ",
where
Oy Oy . Ou1
yo dn) |G
A(z1, -, xn)
Oyn  Oyn .. Ouyn
oxq Oxo Oy,
Since A is a real symmetric matrix, we can find an orthogonal matrix U(= U(x1,x2, - ,x,)) such that
UAUT is a diagonal matrix. Then we obtain n? equations gg; =u(21, - ,2n) (4,7 =1, ,n).
In the special case of n = 2, we suppose the second order differential operator in the original equation is
0? 02 0?
Lu=A—— 4222 02

Ox0y Oxdy oy?
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Then with the change of variable £ = £(x,y), n = n(x,y), the operator Lu takes the form

0%u 82 82u ou ou

(o d€ ¢ 9\’
Al_A(ax) +2p% wo(ay) ,

05 0n ocon  onoE\ | oEdn
81:(‘330 +B <8x8y *ox Ox Oy Jrc@y@y’

on on on
( > +2Baxan+c<ay>

(B2 — AC). Beside Theorem 22.1 and formulas (22.7)-

(22.13) in the textbook, we also have the followmg more explicit results.
1) B2 = AC. In this case, put k = % = % and we have

7755*7555;7@*@3’7
AA(M+k@> &A(M+k%><%+k% L Ci=A(g, g

In order that both B; and C; vanish it is sufficient to put

on . On
ALY Sl
ox + dy

u=A1— Ly,

where

B, =

As a consequence, we have B? — A;0; =

=0.

For the solution of first order linear PDE, see Ding and Li [2]. £ can be chosen arbitrarily in this case, as
far as the change of variable (x,y) — (&,7) is non-singular.

2) B2 > AC. First assume A does not vanish (the case C' # 0, A = 0 can be treated in a similar way;
the case A = C' = 0 we shall deal with separately). We put £ = z, n = ¢(z,y). Then the condition that By
should vanish becomes

A9n L gon _
833 8y '
Solving for n, we can obtained the canonical form of a hyperbolic second order linear PDE. If A = C = 0,

then the original equation will have a principle term of the form aa;gy. Use the substitution & = x + v,

n = x — vy, the equation takes the canonical form

Qu _ Pu
oxi2  On?
22.2 Exercise at the end of chapter
1. (1)

Proof. Using the notation of Theorem 22.1, we have a = 1, b =0, c = y. If b> —ac > 0, i.e. y <0, the ODE
for characteristics is

Y sy
So the two integral curves are /=y — 3 = C and /=y + § = Cy, or equivalently, x = Cy and 2¢/—y = Cs.
Under the change of variable £ = x, n = 2/—y, the equation is simplified to ng — W =0. If b2 —ac <0,
i.e. y > 0, the ODE for characteristics is

% = +i /7.

By similar argument We should choose the change of variable { = z, n = 2,/y. Then the original equation
is reduced to 652 + 6n =0. O
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(2)

Proof. Using the notation of Theorem 22.1, we have a = 1 + 22, b =0, and ¢ = 1 4+ 32. So the ODE for
characteristics is
dy
e
Writing it in the form of separated variables, we have

+iy/(1+ 22)(1 + 92).

dy _ 4 dx
V1+y? V1+a?

We can solve these equations to obtain the change of variable

n = arcsinhy,

{5 = arcsinhx

under which the original equation is reduced to ‘g%fj + g%ﬁ =0. O

3)

Proof. Using the notation of Theorem 22.1, we have a = tan?z, b = —ytanz, and ¢ = 2. Then A =
b2 — ac = 0. So the ODE for characteristics is

dy Yy
dz tanz’

which has the general solution y = C'sinx. Let £ = ysinx and n = y cos z. The original equation is simplified
to

9% ou ou
2 2\Y e bl
(& +n)an2 8§+7’8n 0.

(4)

Proof. Using the notation of Theorem 22.1, we have ¢ = 1, b = —sinz, ¢ = —cos®z. So the ODE for

characteristic becomes
dy

dx

which has a general solution y = cosx + C. Calculation shows the following change of variable simplifies the
original equation most

= —sinz,

{5 =zT+y—cosx
n=x—y-+cosz,
under which the original equation becomes g:é‘n =0. O
2. (1)
Proof.
ou

x|’ 0x2 )

Jdu I Ov v 9%
ox '

(91) (92'LL
_ (az+by) | _ i _ —(az+by) } _ _ e i
= e |: a’l}(m,y)'i— :| =e { a av + a - =+ x2

By symmetry, we have

du
dy

ov 0%u ov
_ (az+by) | _ e vou_ (az+by) ) 31| e
=e [ bu(z,y) + y} "o =e { b _ bv + y]

R
oy  o0y* )’

104



Therefore

ou Ou
2a— + 2b—
v u + aa + oy
ov 0 0 0
= (@b | (g2 4 p?)y — 2aa— ba—v + v —2(a® + b*)v + 2aa—v + 2ba—z
= ¢ (aztby) [0 = (a® + b*)v] .
So the original equation is transformed into 7%v — (a? + b%)v = 0. O
(2)
Proof. Follow the hint and use the transformation u(x,y) = e~4 "y (x, 7). O

3)

Proof. Let u(z,y,t) = v(z,y,t)h(a, 8,7, x,y,t), where h(a, 3,7, z,y,t) = e**+Py+7 Then it’s easy to see

ou ov ou ov ou ov
&nh<av+8x>’ 8yh(ﬂv+8y>’ 8th<’y’u+6t)

and
0%u Ov v 0*v] 0%u v o v
Tt =h o (e ) o+ o) g = [p (o ) 405+ o
8%u —nlp ow—|—@ o 6v+ 8%v
Oxdy ox (’9y Oxdy |’
Therefore
32 0%u 0% 8 8u 8u

= (ac? +cﬂ2+2baﬁ+da+eﬂ)v+(2ao¢+2bﬁ+d)g—+(2¢:ﬂ+2ba+e)a +(f =)

+ & +2bﬂ + & _ @
Yorz T Pozay T “oy2 ot

2[5 0= [
we have o = 5 be cd 3= bd=ac_ Note
aa?® + cf% + 2baf + da + ef = [a, B] [Z [(j m + [a, ] m = (o, ] { [Z ﬂ m + m} —0.

(ac—b2)> 2(ac—b2)
So by choosing the above « and 3, and by setting v = f, we can transform the original equation into the
form

Solving the equation

a@ + 2b762v + c@ = @
Ox? oxdy  O0y2 ot

Remark 31. Something wrong in the calculation? Check!
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Proof. By Example 13.1 (p172), the general solution of

Pu 0%
A R
ot? Ox?

can be written as f(z + at) + g(x — at). Using the boundary condition, it’s easy to see f(z) = ¢ (%) — g(0)
and g(z) = v (%) — f(0). So the solution must be

¢<x;at> H}(xzat) _ 6(0).

O
4. (1)
Proof.
ou . Pu . uo 0?u .
— =—¢ "siny, — =e "siny, — =e Fcosy, — = —e “siny.
Oz S 4 Oy 4 0y? 4
So v?u = 0. u|,—o =  is obvious. O

(2)

Proof. Let (z,y) approach (0,1) along the y-axis, we have

1
7 X

u(:c,y) = ’U,(O7y) A q

So as along as u(x, y) has a definite value at (0,1), it cannot be continuous at (0,1). The case of (0, —1) can
be proved similarly. O

A The Black-Scholes partial differential equation

In mathematical finance, the following PDE appears in the derivation of the Black-Scholes call option pricing
formula (K > 0):

a(t,x) + racy(t, o) + 2022y, (t,x) = re(t,z), t €[0,T), >0
oT,2) = (x - K)*,

c(t,0) =0, t € [0, 77,

lim, oo fc(t,z) — (xz — e " T-DK)| =0, t € [0,T].

Many more PDEs important in mathematical finance can be found in Kohn [6]. For now, we focus on the
explicit solution of the Black-Scholes PDE using the techniques from the current textbook. “How do you
derive and solve the Black-Scholes PDE’ is a frequently asked question in Wall Street job interviews. The
presentation below is essentially that of Wilmott et al. [12], §5.4.

A.1 Derivation of the Black-Scholes PDE and its boundary conditions

For the derivation of the main PDE, we refer to Shreve [10], §4.5.3 (see also Remark 32); for the derivation
of the boundary conditions, we refer to Shreve [10], §4.5.4.
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A.2 Simplification of the Black-Scholes PDE via change-of-variable

. . . . 2 2 . .
The first step of simplification is to convert ma% and .132% to a% and 86—772, respectively, via some change of

variable x = f(n). This is the trick presented in §13.4 of the textbook. With the change-of-variable x = e"
and w(t,n) = c(t,e"), we have

wy(t,n) = xcg(t, ), wyy(t,n) = xca(t, x) + 2 cun(t, ).

So the original PDE becomes

1 1
we + (7‘ B 202) Wy + 5021”7777 =rw, —00 <17 <00, t€[0,T).

Or equivalently,

1
Wy + (k= 1w, + T W= kw,
2

where k = r/10%,
The second simplification is to convert the equation into a form as close as possible to the standard heat
equation

5 — alAv = [],

which means we need to normalize the coefficient of w; to —1. Define v(7,7n) = v(7(t),n) = w(t,n). Then

1
Wy (t, ) + (k= Dwy(t,1) + ?ﬂwt(t,n) — kw(t,n)
2
1 dr

= Upy(7,m) + (k= Dvy(7,m) + 1702%”7(7—’ n) — kv(, 7).
2

So we want to set 7 = 20%(T — t). Then v(7,7) satisfies the following PDE:

1
Uy = Uy + (kK — 1)v, — kv, foo<n<oo,()<7§§02T.

The third step of simplification is to remove the first order differential operator a@ so that we have the
standard form of heat equation. To do so, we use the trick introduced in Exercise Pro%lem 2 of Chapter 22
of the textbook. More precisely, rewriting the PDE for v in the following form

vr + kv = vy + (K — 1oy,

and motivated by the exponential integrating factor employed in solving first order ODE, we try the function
u(r,m) = e P7y(7,n). Then

uy = e (v 4 ), Uy, = e (0 + vy, + avy, + vyy), wr = T (Bo + v,).
So we have
Uy — Upy = TP, + (B — a®)v — 200, — vpy].

Comparing with the PDE for v: v, + kv — (k — 1)v, — v, = 0, we want to set a = % and f=a?+k=
ik +1)2
In summary, u satisfies the PDE
UT(T7 77) = uﬂﬂ(Tv n)a —00 < n < o, O <T S %U2T7
k1 ko1 \ T
u(0,n) = (e > — Ke 2 ")
lim,, o u(,) =0, 7 € [0, $02T],
: k1 —7(k+1)27' —7"T/la2 1 _2
lim,) o0 [e z 171 Tu(r,n) — (" — Ke 2 )} =0, 7€[0,50°T].
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and w is related to ¢(t, x) in the following way

k=1 (k+1)? k=1 (k+1)? T k—1_ (k41?2 T
u(r,g) =e = T Tu(r ) = ez T Tw(T_uJ?) e e (T - 15"

2 2

or equivalently
c(ty 73) =u (;0’2(T — t)7lnx> 6_% lnf—W%UQ(T—t).

Remark 32. We have used change-of-variable throughout to simplify the Black-Scholes PDE. There is an
observation that can simplify the PDE to begin with. Recall during the derivation of the Black-Scholes PDE,
we used the fact that under the risk-neutral measure, the discounted call option price e "tc(Sy,t) should
be a martingale, where the underlying asset price process Sy satisfies the SDE dS; = rSydt + aStth (Wt
is a Brownian motion under risk-neutral measure). Note X; = e~ "'S; is a martingale satisfying the SDE

dX; = UXtth, so instead of writing ¢ as a function of Sy and t, we suppose c is a function of X; and t.
Then

1
d[ethc(Xt, t)] = et —re4 ¢ + 5a2xzcm dt + martingale part.

So the PDE has a simpler form: c; + %O'QJ’JQCII = rc. To remove x? 2(5—;
becomes 68—7; — 6@. The resulting expression is not really as simple as we hoped, since first order differential
operator still persists. But the coefficients become simpler. The rest of the simplification should proceed as

before.

, we still need to set x = e" and x

A.3 Solution of the simplified PDE and the Black-Scholes call option pricing
formula

There are many methods to solve the initial value problem of heat equation over an infinite line. For example,
we could use Fourier’s transform. However, due to the messy form of the boundary value function, which
is probably not easy for inverse Fourier transform, we employ the method of Green’s function. Recall the
fundamental solution of the equation u; = wu,,, is

—e
2v/ 7t

So u(x,T) can be obtained through the convolution formula:

1 oo
u(r,n) = W[wu(oaf)e
k1 k=1 _ (n—=2)?

1 -
_ 21 _ Ke 2 7]) ir  dx.
= /_OC (e e e x

After some tedious calculation, we can get the Black-Scholes call option pricing formula

(n—=)2
ir  dx

¢(Sp,t) = SyN(dy) — Ke " T=IN(dy),

where

dl:log%+(r+%02)(Tft) dzzlog%Jr(rf%UQ)(T—t)'
oVT —t ’ oVT —1t

Remark 33. An alternative, and much easier, method, is via the Feymann-Kac formula, see Oksendal [7]
for details. It corresponds directly to the so-called risk-neutral pricing methodology.

108



References

[1]
2]

John B. Conway. Functions of one complex variable, 2nd Edition. Springer, 1978.

Ding Tong-Ren and Li Cheng-Zhi. A course in ordinary differential equations (in Chinese). Higher
Education Press, Beijing, 2004.

Fang Qi-Qin. A course on complex analysis (in Chinese), Peking University Press, 1996.

I. M. Gelfand and S. V. Fomin (translated and edited by Richard A. Silverman). Calculus of variations,
Dover Publications, 2000.

Gong Sheng and Gong You-Hong. Concise complex analysis, 2nd Edition. World Scientific, 2007.

Robert V. Kohn. PDFE for Finance, NYU Master of Science Program: Mathematics in Finance. Spring
2003. http://www.math.nyu.edu/faculty/kohn/pde_finance.html

B. Qksendal. Stochastic differential equations: An introduciton with applications. Sixth edition. Springer-
Verlag, Berlin, 2003.

M.A. Qazi. The mean value theorem and analytic functions of a complex variable. J. Math. Anal. Appl.
324 (2006) 30-38.

Shen Xie-Chang. Mathematical analysis, Volume 2 (in Chinese). Higher Education Press, Beijing, 1985.
S. Shreve. Stochastic calculus for finance II. Continuous-time models. Springer-Verlag, New York, 2004.

E. T. Whittaker and G. N. Watson. A course of modern analysis, 4th Edition. Cambridge University
Press, 1927.

P. Wilmott, S. Howison, and J. Dewynne, The mathematics of financial derivatives: A student intro-
duction, Cambridge University Press, Cambridge, UK, 1995.

109



